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Abstract Weakly supervised machine learning algorithms are able to learn from ambiguous samples or

labels, e.g., multi-instance learning or partial-label learning. However, in some real-world tasks, each training

sample is associated with not only multiple instances but also a candidate label set that contains one ground-

truth label and some false positive labels. Specifically, at least one instance pertains to the ground-truth label

while no instance belongs to the false positive labels. In this paper, we formalize such problems as multi-

instance partial-label learning (MIPL). Existing multi-instance learning algorithms and partial-label learning

algorithms are suboptimal for solving MIPL problems since the former fail to disambiguate a candidate

label set, and the latter cannot handle a multi-instance bag. To address these issues, a tailored algorithm

named MIPLGP, i.e., Multi-Instance Partial-Label learning with Gaussian Processes, is proposed. MIPLGP

first assigns each instance with a candidate label set in an augmented label space, then transforms the

candidate label set into a logarithmic space to yield the disambiguated and continuous labels via an exclusive

disambiguation strategy, and last induces a model based on the Gaussian processes. Experimental results

on various datasets validate that MIPLGP is superior to well-established multi-instance learning and partial-

label learning algorithms for solving MIPL problems.
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1 Introduction

In standard supervised learning, each training sample is represented by a single instance associated with

a class label. In recent years, supervised learning has achieved fruitful progress when a large amount

of supervision is available. However, annotating large amounts of high-quality labels is time-consuming

and costly, especially in fields that require expert knowledge. To overcome these issues, several weakly

supervised learning paradigms are proposed and have attracted significant research attention.

According to the quality and quantity of labeling information, weak supervision can be roughly divided

into three categories, i.e., incomplete, inexact, and inaccurate supervision [1]. The inexact supervision

refers to coarse-grained labels and contains two popular learning frameworks, i.e., multi-instance learning

(MIL) and partial-label learning (PLL). As illustrated in Figure 1a, in MIL, multiple training instances are

arranged in a bag and we only know the binary bag-level label rather than the instance-level labels [2,3].

A negative bag constitutes only negative instances, while a positive bag contains at least one positive
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Figure 1 Different weakly supervised learning frameworks, where the grey polygons refer to the false positive labels.

instance and should contain several negative instances. Therefore, the exact positive instance is unknown,

i.e., the inexact supervision exists in the instance space. The framework of PLL is shown in Figure 1b,

where each training sample is represented by a single instance coupled with a candidate label set, which

consists of a ground-truth label and several false positive labels [4]. Therefore, the exact ground-truth

label is unknown, i.e., the inexact supervision exists in the label space. In a sense, multi-instance learning

and partial-label learning are dual frameworks to each other in which the inexact supervision exists in

the instance space and the label space, respectively.

However, the inexact supervision can exist simultaneously in the instance space and the label space.

For example, in histopathological image classification (as illustrated in Figure 2a), each image can be

treated as a multi-instance bag, while ground-truth labels are provided by annotators with professional

domain knowledge [5, 6]. To reduce the labeling cost, we can assign each multi-instance bag with a

candidate label set rather than an exact label, and train a model to learn from the partially labeled

multi-instance bags. In video classification (as illustrated in Figure 2b), each video consists of multiple

frames represented as a set of instances, and the labels from social media contain noises that need to

be corrected manually [7, 8]. The labeling cost can be significantly reduced if the video classification

algorithm can learn from samples represented as sets of instances associated with candidate label sets.

Motivated by the potential applications, we formalize a novel framework named multi-instance partial-

label learning (MIPL), which can learn from data with dual inexact supervision, i.e., the inexact su-

pervision exists both in the instance space and the label space. In Figure 1d, each training sample is

represented by a multi-instance bag associated with a bag-level candidate label set, which consists of only

one ground-truth label and some false positive labels. Moreover, the bag contains at least one instance

that belongs to the ground-truth label while no instance pertains to the false positive labels. It is note-

worthy that MIPL is different from multi-instance multi-label learning (MIML) presented in Figure 1c,

where each multi-instance bag is also associated with a label set [9]. The differences between MIPL and

MIML lie in that the label set in MIML only contains ground-truth labels, while the label set in MIPL

consists of one ground-truth label and some false positive labels.

To solve the MIPL problems, we propose a tailored algorithm named MIPLGP, i.e., Multi-Instance

Partial-Label learning with Gaussian Processes. First, in order to assign each instance with a candidate

label set containing the ground-truth label, we propose a label augmentation strategy to augment each

candidate label set with a negative class label. Second, to infer the ground-truth labels from the candidate

label sets, and render the MIPL problems amenable to be solved by a multi-output Gaussian processes

regression model, we propose the Dirichlet disambiguation strategy. Last, to infer the parameters of

the Dirichlet disambiguation strategy accurately, MIPLGP induces a multi-output Gaussian processes

regression model with GPU accelerations.

Empirical evaluation of MIPLGP is conducted on five MIPL datasets. The experimental results indicate

that: (a) The MIPL is an exclusive problem that is difficult to be solved by neither multi-instance
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Figure 2 Potential applications of MIPL, where the ground-truth label is shown in red.

learning approaches nor partial-label learning approaches. (b) MIPLGP achieves superior results against

well-established multi-instance learning and partial-label learning approaches. (c) The proposed label

augmentation and Dirichlet disambiguation strategies are both important for solving the MIPL problems.

The rest of the paper is organized as follows. First, related work is briefly reviewed. Second, we present

the proposed MIPLGP and report the experimental setting and results. Last, we conclude this paper.

2 Related Work

2.1 Multi-Instance Learning

Multi-instance learning algorithms can be roughly divided into two groups, i.e., instance-level algorithms

and bag-level algorithms [2]. The former predicts bag-level labels by aggregating instance-level predic-

tions, e.g., averaging the probabilities of all instances in a bag. The latter induces classifiers by treating

each bag as a whole entity, which includes the bag-space paradigm and embedded-space paradigm.

In general, probabilistic multi-instance learning methods create a model that characterizes the distri-

bution of instance-level labels and yields aggregated bag-level labels. Kim and la Torre [10] proposes

a nonparametric model to capture the underlying generative process by integrating a special bag class

likelihood into the Gaussian processes. Along this line, Haußmann et al. [11] modifies the standard bag

likelihood and infers an instance-label Gaussian processes classifier using variational Bayes. To model the

dependencies among the instances, the variational autoencoder is employed to predict both the instance-

level and bag-level labels [12, 13]. A recent tendency to address multi-instance learning problems is

combining neural networks with attention mechanisms [14], where the attention scores indicate the im-

portance of the instances to the bag [6, 15]. To our knowledge, these multi-instance learning algorithms

are designed for binary classification problems, which cannot be directly adopted to solve MIPL prob-

lems. Although there are some multi-instance learning algorithms that can handle multi-classification

problems [16,17], they cannot tackle the challenge of false positive labels in the candidate label set.

2.2 Partial-Label Learning

Partial-label learning algorithms utilize the averaging-based or identification-based disambiguation strate-

gies to disambiguate the candidate label sets. The averaging-based disambiguation strategy treats all

labels in the candidate label set equally, and comprehensively considers the outputs of the learned model

on each candidate label [18, 19]. The identification-based disambiguation strategy considers the poten-

tial ground-truth label as a latent variable, and disambiguates the ambiguous labels by optimizing the

objective function related to the latent variable [20,21].



Wei Tang, et al. Sci China Inf Sci 4

Based on the graphic model, Jin and Ghahramani [4] minimizes relative entropy between the estimated

label distribution and the prior distribution of the class labels. To capture underlying structures of

the data, Liu and Dietterich [22] maps training instances to mixture components and samples a label

for each mixture component. Based on Gaussian processes, Zhou et al. [23] defines a non-Gaussian

likelihood to disambiguate the candidate label sets and computes the posterior distribution using Laplace

approximation. Recently, some deep learning-based disambiguation methods have been investigated for

partial-label learning [24,25]. However, we note that all of them cannot handle multi-instance bags.

2.3 Multi-Class Gaussian Processes Classification

Let X = Rd denote the instance space and Y = {l1, l2, · · · , lq} denote the label space with q class labels.

{(X,Y ) | 1 6 i 6 m} is a supervised dataset, where X = (x1,x2, · · ·xm) indicate m training instances,

and Y = (y1, y2, · · · , ym) are the target class labels1). The goal of multi-class Gaussian processes classifi-

cation (MCGPC) models is to learn a classifier h : X → Y. For MCGPC models, the latent functions at

m instances for q classes is F = [f1,f2, · · · ,f q]> = [f1
1 , · · · , f1

m, f
2
1 , · · · , f2

m, · · · , f
q
1 , · · · , fqm]>. Following

Gaussian processes, the distribution of F is Gaussian, i.e., f c ∼ GP(0, kc(x,x′)), where c ∈ {1, 2, · · · , q},
and kc(x,x′) is a kernel function to measure the correlation at any a pair of instances x and x′ for the

c-th class. For an instance xi, the largest value of fi = [f1
i , f

2
i , · · · , f

q
i ] can be considered as the class

label, i.e., Yi = arg maxc f
c
i . A common form of the likelihood is P (Yi = c | fi) = exp(f ci )/

∑q
j=1 exp(f ji ).

Consequently, the posterior distribution P (F | Y ,X) ∝ P (F | X)P (Y | F) and the data likelihood

P (Y |X) =
∫
F
P (F |X)P (Y | F) are non-Gaussian, which is intractable and requires approximations.

Several algorithms have been proposed for MCGPC. Carlos and Daniel [26] proposes to use expectation

propagation to scale MCGPC to millions of data points. Théo et al. [27] introduces a logistic softmax

likelihood and employs stochastic variational inference to yield fast and stable solutions. Without being

limited to specific likelihoods, Liu et al. [28] proposes a framework for multiple likelihoods. Motivated

by an astrophysics dataset that contains noisy inputs, Carlos et al. [29] trains MCGPC models with

variational inference. However, these models cannot directly solve the MIPL problems.

3 Methodology

In this section, we propose a MIPL algorithm based on Gaussian processes, i.e., MIPLGP. To the best of

our knowledge, this is the first algorithm to address the MIPL problems. First, we introduce the notations

and define an augmented label space, which equips each instance among a bag with a suitable candidate

label set. Then, we propose a novel Dirichlet disambiguation strategy that effectively disambiguates the

candidate label sets. Last, we present a multi-output Gaussian processes model.

Let X = Rd denote the instance space and Y = {l1, l2, · · · , lq} denote the label space with q class labels.

The goal of MIPL is to learn a classifier h : 2X → Y from a training dataset {(Xi,yi) | 1 6 i 6 m}
with m bags and corresponding candidate label sets. Specifically, a multi-instance partial-label sample is

denoted as (Xi,yi), where Xi = [x1
i ,x

2
i , · · · ,x

zi
i ]> is a bag of zi instances, xji ∈ X for ∀j ∈ {1, 2, · · · , zi},

and yi = [y1
i , y

2
i , · · · , y

q
i ]
> ∈ {0, 1}q is the candidate label set of Xi where yci = 1 means that the c-th

label is one of the candidate labels of Xi and yci = 0 otherwise.

3.1 Label Augmentation

In multi-instance learning, only the bag-level labels are available, while the instance-level labels are

unknown. To tackle this problem, a straightforward approach is to propagate the bag label to be the

dummy label of all instances in the bag. But an obvious problem is that it will incorrectly assign the

negative instances in a positive bag with positive labels. Analogously, in MIPL, if the bag-level candidate

label set is directly applied to all the instances in the bag, the ground-truth labels of a substantial amount

of instances will not exist in their candidate label sets, which violates the settings of partial-label learning.

1) We use symbols in bold to denote matrices and vectors, and use regular symbols to denote scalars.
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To address the issue, we propose to utilize an augmented label space Ỹ = {l1, l2, · · · , lq, lneg} with

q̃ = q+1 class labels, which augments a negative class label to the original label space Y. Specifically, we

assign instances that do not pertain to label space Y with the augmented negative class lneg. For example,

given a multi-instance bag Xi associated with a candidate label set yi = [y1
i , y

2
i , · · · , y

q
i ]
>, each instance

in Xi is endowed with an augmented candidate label set ỹi = [y1
i , y

2
i , · · · , y

q
i , y

neg
i ]> where ynegi = 1.

Consequently, we can derive the instance-level features and semantic information based on the aug-

mented label space. Let X = [x1
1,x

2
1, · · · ,x

z1
1 ,x

1
2,x

2
2, · · · ,x1

m, · · · ,xzmm ]> ∈ Rn×d denote the feature

matrix of n instances spread over m bags and Ỹ = [ỹ1
1 , ỹ

2
1 , · · · , ỹ

z1
1 , ỹ

1
2 , ỹ

2
2 , · · · , ỹ1

m, · · · , ỹzmm ]> ∈ Rn×q̃

denote the partial-label matrix of the n instances, where n =
∑m
i=1 zi is the total number of the instances

in the dataset and ỹi is the augmented candidate label set of Xi as well as each instance in bag Xi, i.e.,

ỹi = ỹ1
i = ỹ2

i = · · · = ỹzii . Notably, the label augmentation occurs before the training phase.

3.2 Dirichlet Disambiguation

In order to find the ground-truth labels from the candidate label sets, we conceive a novel disambiguation

strategy for MIPL, which is named Dirichlet disambiguation. Following the disambiguation process, the

likelihood is expressed as a logarithmic Gaussian function, which renders the MIPL problems amenable

to be solved by a multi-output Gaussian processes regression model.

Given an augmented MIPL training dataset (X, Ỹ) with m bags totalling n instances, one instance

and its candidate label set can be written as (xji , ỹ
j
i ) for ∀i ∈ {1, 2, · · · ,m} and j ∈ {1, 2, · · · , zi}.

When the context is clear, we omit the instance index j to (xi, ỹi) for brevity. It is intuitive to use a

categorical distribution Cat(θi) to infer the ground-truth label of the instance, where the class probability

θi = [θ1
i , θ

2
i , · · · , θ

q
i , θ

neg
i ]> is a multivariate continuous random variable constrained in a q dimensional

probability simplex, i.e.,
∑q̃
c=1 θ

c
i = 1 and θci > 0 (∀c ∈ {1, 2, · · · , q, neg}). It is worth noting that

the simplex promotes mutual exclusion among the candidate labels. In order to establish the class

probability of the categorical distribution, we utilize the Dirichlet distribution, which is the conjugate prior

to the categorical distribution, to reduce computational difficulty. Accordingly, the Dirichlet distribution

Dir(αi) with concentration parameters αi = [α1
i , α

2
i , · · · , α

q
i , α

neg
i ]> is adopted to measure θi. Concretely,

the likelihood model is given by:

p(ỹi | αi) = Cat(θi), θi ∼ Dir(αi). (1)

To draw the coefficient θi from the Dirichlet distribution, the accurate values of αi become pivotal.

In supervised learning, each instance is associated with a unique ground-truth label, and thus a constant

weight w can be directly added to the index corresponding to the ground-truth. For example, given

an observation yi = [y1
i , y

2
i , · · · , y

q
i ]
> that satisfies yci = 1 and yji = 0 (∀j 6= c), we have αci = w + αε

and αji = αε (∀j 6= c), where αε is the Dirichlet prior such that 0 < αε � 1. However, it is not

appropriate to keep the weights unchanged during the training process, since the candidate label set

is contaminated by the false positive labels. To overcome this limitation, we propose to synergize the

Dirichlet distribution with an iterative disambiguation strategy to identify the ground-truth label from

the contaminated candidate label set. To achieve the disambiguation strategy, αi = [α1
i , α

2
i , · · · , α

q
i , α

neg
i ]

are initialized to constant weights for c ∈ {1, 2, · · · , q, neg}:

αci =

{
1
|ỹi| + αε if yci = 1,

αε otherwise,
(2)

where 0 < αε � 1 and |ỹi| is the cardinality which measures the number of non-zero elements in

the augmented candidate label set ỹi. The softmax values of the classifier output h̃i = h̃(xi) =

[h1
i , h

2
i , · · · , h

q
i , h

neg
i ]> on the candidate label set indicate the probabilities that each candidate label

is a ground-truth label. Therefore, we utilize the softmax values to gradually eliminate the false positive

labels and identify the ground-truth label in each iteration:

αci =


exp(hci )∑
yt
i
=1 exp(hti)

+ αε if yci = 1,

αε otherwise.
(3)
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In a nutshell, αi = [α1
i , α

2
i , · · · , α

q
i , α

neg
i ]> are first initialized to constant weights as defined in Eq. (2)

and then gradually updated according to Eq. (3).

Next, the problem becomes how to sample from the Dirichlet distribution. Considering both genera-

tion quality and computation cost, we design a two-step process to generate the Dirichlet samples from

q̃ independent Gamma-distributed random variables. First, we generate q̃ Gamma-distributed random

variables {γ1
i , γ

2
i , · · · , γ

q
i , γ

neg
i } from the Gamma distribution Gamma(αci , 1) for c = 1, 2, · · · , q, neg, re-

spectively. Then, we normalize the q̃ Gamma-distributed random variables to obtain the realizations.

The formulations of the generation process are as follows:

θci =
γci∑q̃
j=1 γ

j
i

, γci ∼ Gamma(αci , 1). (4)

The probability density function of Gamma(αci , 1) is γ(αci−1) exp(−γ)
Γ(αci )

, where αci > 0 is called the shape

parameter and Γ(·) is the gamma function.

In order to use an exact Gaussian processes model to infer αci accurately, we employ the random

variables ẋci drawn from a logarithmic normal distribution LogNormal(ẏci , σ̇
c
i ) to approximate the Gamma-

distributed random variables γci by moment matching, i.e., E[γci ] = E[ẋci ] and V[γci ] = V[ẋci ]:

αci = exp

(
ẏci +

σ̇ci
2

)
, αci = (exp (σ̇ci )− 1) exp (2ẏci + σ̇ci ) . (5)

As Milios et al. [30] shows, it is reasonable to estimate γci by LogNormal(ẏci , σ̇
c
i ). The parameters of

LogNormal(ẏci , σ̇
c
i ) are derived by solving Eq. (5):

σ̇ci = log

(
1

αci
+ 1

)
, ẏci = logαci −

σ̇ci
2

=
3

2
logαci −

1

2
log(αci + 1), (6)

where ẏci is a continuous label in the logarithmic space and σ̇ci is a variance related to ẏci . Based on the

above Dirichlet disambiguation strategy, the original sample (xi, ỹi) is transformed into (xi, ẏi), where

ẏi is a candidate label set with continuous labels. Meanwhile, a Gaussian likelihood is constructed in the

logarithmic space. Given a MIPL training dataset (X, Ỹ), we reshape the transformed candidate label

matrix to yield a row-wise concatenation Ẏ = [ẏ1
1 ; ẏ2

1 ; · · · ; ẏz11 ; ẏ1
2 ; ẏ2

2 ; · · · ; ẏ1
m; · · · ; ẏzmm ] ∈ Rq̃n.

3.3 Gaussian Processes Regression Model

Based on the continuous candidate label set matrix Ẏ, we can transform the MIPL problems from

multi-class classification problems to Gaussian processes regression problems with q̃ outputs. In order

to estimate αi accurately, we develop a multi-output Gaussian processes regression model based on the

Gaussian likelihood in the logarithmic space.

For the multi-output Gaussian processes regression model, the vector of q̃ latent functions {f1(·), f2(·),
· · · , fq(·), fneg(·)} at all n training instances are first introduced: F = [f1,f2, · · · ,fneg]> = [f1

1 , · · · , f1
n,

f2
1 , · · · , f2

n, · · · , f
neg
1 , · · · , fnegn ]>, where the latent variate F has length q̃n. The distribution of F is

defined by a prior mean function µ = 0 and a covariance function, i.e., a prior kernel k(·, ·) : Rd×Rd → R,

which is chosen to be a Matérn kernel [31] in this paper. For ∀c, c′ ∈ {1, 2, · · · , q, neg}, the correlation of

the outputs at any a pair of instances x and x′ can be represented as:

Cov[f c(x), f c
′
(x′)] = kc (x,x′) =

 21−ν

Γ(ν)

(√
2νd
`

)ν
Kν

(√
2νd
`

)
if c = c′,

0 otherwise.
(7)

Generally speaking, ν is a smoothness parameter and takes the value from {0.5, 1.5, 2.5}. Here, ` is a

positive parameter, d is the Euclidean distance between x and x′, and Kν is a modified Bessel function.

Finally, the covariance matrix K ∈ Rq̃n×q̃n of the q̃ latent processes is block diagonal by the matrices

K1,K2, · · · ,Kq̃ of shape n × n. Gaussian processes place a Gaussian prior over latent variable, i.e.,

P (F | X) = N (0,K), and the Gaussian likelihood in the logarithmic space is P (Ẏ | F) = N (F,Σ), where
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Figure 3 Plate diagram for MIPLGP, where the grey circles are observed variables and white ones are latent variables.

Σ is the matrix form of σ̇ci in LogNormal(ẏci , σ̇
c
i ). Following the Bayes’ rule, the posterior distribution

P (F | X, Ẏ) ∝ P (F | X)P (Ẏ | F) and likelihood P (Ẏ | X) =
∫
F
P (F | X)P (Ẏ | F) are both Gaussian.

The above likelihoods are based on the instances-level features and labels. In multi-instance learning,

however, a ubiquitous issue is how to aggregate the instance labels to generate a bag label. This problem

also takes place in MIPL and is more difficult due to the ambiguous multi-class classification. A feasible

solution is to set the bag label with the class label corresponding to the maximum value among the class

probabilities of all instances in the bag. Let Θi = [θ1i ,θ
2
i , · · · ,θ

zi

i ]> ∈ Rzi×q̃ (θji = [θ1
i , θ

2
i , · · · , θ

q
i , θ

neg
i ]>

for j = 1, 2, · · · , zi) denote the class probabilities of the multi-instance bag Xi among q̃ outputs. The

aggregated bag label is as follows:

Yi = arg max
j 6=q̃

Θ
(z,j)
i , (8)

where Θ
(z,j)
i is the element at the z-th row and the j-th column of Θi. The plate diagram of MIPLGP

is illustrated in Figure 3, where the grey circles represent the observed variables, i.e., features and bag

labels, and the white circles represent the latent variables.

During the training, we minimize the negative log marginal likelihood:

L = − logP (Ẏ | X,Φ) ∝ log |K|+ Ẏ>K−1Ẏ, (9)

where Φ is the model parameter. The derivative is as follows:

∂L
∂Φ
∝ Tr

(
K−1 ∂K

∂Φ

)
− Ẏ>K

∂K−1

∂Φ
KẎ, (10)

where Tr(·) is the trace operation. Using the Cholesky decomposition, the naive multi-output Gaussian

processes regression algorithms computer K−1Ẏ with O(q̃n3) time. However, we follow the precondi-

tioned conjugate gradients (PCG) algorithm in [32], which formulizes K−1Ẏ as the solution to an opti-

mization problem K−1Ẏ = arg minv( 1
2v>Kv−v>Y), and solves the problem iteratively. Consequently,

the asymptotic complexity of our multi-output Gaussian processes regression model is O(q̃n2) [33].

Given an unseen multi-instance bag X∗ = [x1,x2, · · · , xz∗ ] with z∗ instances, the GP model generates

the predictive distribution P (F∗|X, Ẏ,xi∗) (i∗ = 1, 2, · · · , z∗) for the corresponding latent variables

F∗ = [f∗1, f∗2, · · · , f∗q̃]>. The Dirichlet posterior of the class label is procured from the predictive

distribution using the Monte Carlo method so as to calculate the expectation of class probability:

E[θci∗ | X, Ẏ,xi∗ ] =

∫
F∗

exp (f∗c(xi∗))∑q̃
j=1 exp (f∗j(xi∗))

P (f∗c(xi∗) | X, Ẏ,xi∗), (11)

where P (f∗c(xi∗) | X, Ẏ,xi∗) is the predictive distribution for f∗c(·, ·). We write the class probability of

xi∗ as θi∗∗ = [θ1
i∗
, θ2
i∗
, · · · , θqi∗ , θ

neg
i∗

], and let Θ∗ = [θ1∗ ,θ
2
∗ , · · · ,θz∗∗ ]> ∈ Rz∗×q̃ denote the class probabilities

of all instances in the test bag X∗. A bag label is predicted by:

Y∗ = arg max
j 6=q̃

Θ
(z,j)
∗ , (12)

where Θ
(z,j)
∗ is the element at the z-th row and the j-th column of Θ∗.
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Algorithm 1 summarizes the complete procedure of MIPLGP. First, the algorithm propagates the aug-

mented candidate label set of each bag to all instances in the bag (Steps 1-7). After initializing the shape

parameter of the Dirichlet distribution (Step 8), the Gaussian processes model is induced based on the

transformed labels (Steps 9-20). Last, the label of an unseen multi-instance bag is returned by querying

the predicted class probabilities (Step 21).

Algorithm 1 Y∗ = MIPLGP(D, αε, T,X∗)

Inputs:

D : the multi-instance partial-label training set {(Xi,yi) | 1 6 i 6 m} (Xi = [x1
i ,x

2
i , · · · ,x

zi
i ]>, xji ∈ X ,

Xi ⊆ X , X = Rd, yi = [y1
i , y

2
i , · · · , y

q
i ]
>, yci ∈ Y, Y = {l1, l2, · · · , lq})

αε : the Dirichlet prior

T : the number of iterations

X∗: the unseen multi-instance bags with z∗ instances

Outputs:

Y∗ : the predicted bag label for X∗
Process:

1: Augment Y to Ỹ = {l1, l2, · · · , lq, lneg}
2: for i = 1 to m do

3: Augment yi to ỹi = [y1
i , y

2
i , · · · , y

q
i , y

neg
i ]>

4: for j = 1 to zi do

5: Propagate ỹi to be the label of each instance xji
6: end for

7: end for

8: Initialize αi as defined in Eq. (2)

9: for t = 1 to T do

10: for i = 1 to m do

11: for j = 1 to zi do

12: Model the likelihood p(ỹi | αi) = Cat(θi), θi ∼ Dir(αi) according to Eq. (1)

13: Generate Dirichlet samples from the Gamma distribution according to Eq. (4)

14: Derive the continuous candidate label set ẏi as stated by Eq. (6)

15: end for

16: end for

17: Calculate L according to Eq. (9) and ∂L
∂Φ as defined in Eq. (10)

18: Update Φ by the optimizer

19: Update αi according to Eq. (3)

20: end for

21: Return Y∗ according to Eq. (12)

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets

To the best of our knowledge, there are no ready-made datasets for benchmarking MIPL algorithms. To

overcome this limitation, we synthesize five MIPL datasets stemming from relevant literature [34–38],

i.e., MNIST-MIPL, FMNIST-MIPL, Newsgroups-MIPL, Birdsong-MIPL, and SIVAL-MIPL, from domains of

image, text, and biology to compare MIPLGP with other algorithms2).

2) The datasets are publicly available at: http://palm.seu.edu.cn/zhangml/Resources.htm#MIPL data.
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Table 1 Characteristics of the MIPL Datasets.

Dataset #bags #ins #max #min #dims #l-o #l-t #l-r percentage domain

MNIST-MIPL 500 20664 48 35 784 10 5 5 8.0% image

FMNIST-MIPL 500 20810 48 36 784 10 5 5 8.0% image

Newsgroups-MIPL 1000 43122 86 11 200 20 10 10 8.0% text

Birdsong-MIPL 1300 48425 76 25 38 13 13 1 8.3% biology

SIVAL-MIPL 1500 47414 32 31 30 25 25 0 25.6% image

The characteristics of the synthetic datasets are summarized in Table 1. We use #bags, #ins, #max,

#min, #dims, #l-o, #l-t, #l-r, and percentage to denote the number of bags, number of instances,

maximum number of instances in a bag, minimum number of instances in a bag, dimension of each

instance, number of targeted class labels in the corresponding literature, number of targeted class labels

in MIPL, number of reserved class labels, and percentage of the number of positive instances in each

dataset. To synthesize the multi-instance bag with a candidate label set, we take positive instances of

the corresponding label from the targeted class labels and negative instances in the whole reserved class

labels. Furthermore, we sample the false positive labels from the target classes without replacement. For

comprehensive performance evaluation, the number of false positive labels depends on the controlling

parameter r (|yi| = r + 1). The instances and false positive labels are randomly sampled.

We further explain the process for generating MIPL datasets using the popular 10-class classification

dataset MNIST. To obtain a MNIST-MIPL sample, we use a two-step generating procedure. First, a

multi-instance bag is procured. Specifically, we extract positive instances from one of the five target

classes {0, 2, 4, 6, 8} and draw all negative ones from the reserved classes {1, 3, 5, 7, 9} randomly. Second,

the candidate label set of the multi-instance bag is generated by randomly choosing r false positive labels

from the target classes as false positive labels of the multi-instance bag. In our experiments, r is equal

to 1, 2, and 3, respectively. More detailed information on the MIPL datasets is provided in Appendix A.

4.1.2 Comparative Algorithms

MIPLGP is compared against four well-established multi-instances learning algorithms including three

Gaussian processes-based algorithms VWSGP [39], VGPMIL [11], and LM-VGPMIL [11], as well as variational

autoencoder based algorithm MIVAE [12]. In addition, we employ six partial-label learning algorithms

containing two averaging-based algorithms PL-kNN [40] and CLPL [18], two identification-based algorithms

LSB-CMM [22] and SURE [21], the graph matching based disambiguation algorithm GM-PLL [41], and the

feature-aware disambiguation algorithm PL-AGGD [42]. The parameter configurations of the algorithms

are suggested in the respective literature.

To verify the effectiveness of the Dirichlet disambiguation and the label augmentation, we evaluate two

variants of MIPLGP, i.e., MIPLGP-uniform and MIPLGP-naive. The former utilizes the uniform weights

as defined in Eq. (2) throughout the iterations, and the latter handles the candidate label sets only in

the original label space Y, i.e., without label augmentation.

4.1.3 Implementation

We implement MIPLGP using GPyTorch, which is a modular Gaussian process library in PyTorch [33].

For MIPLGP and its variants, we use the Adam optimizer [43] with β1 = 0.9 and β2 = 0.999. The

initial learning rate is 0.1 which is decayed via a cosine annealing method [44]. We set the number of

iterations to 500 for MNIST-MIPL and FMNIST-MIPL datasets and 50 for the remaining three datasets.

For Newsgroups-MIPL dataset, the smoothness parameter ν in Matérn kernel is 0.5, while ν = 2.5 for the

rest. We uniform that ` in Matérn kernel is equal to 1, αε = 0.0001, the size of the preconditioner is 100,

and the number of Monte Carlo sampling points is 512 for all datasets. We perform ten runs of 50%/50%

random train/test splits on all datasets, and record the mean accuracies and standard deviations for each

algorithm. Specifically, we conduct the pairwise t-test at a 0.05 significance level based on the results of

ten runs. Experiments are conducted with Nvidia Tesla V100 GPUs.
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4.2 Experimental Results

In order to overcome the inability of multi-instance learning and partial-label learning to handle the

dual inexact supervision, we carry out experiments with multi-instance learning algorithms and partial-

label learning algorithms using different versions of degenerated MIPL datasets. It is worth noting that

MIPLGP and its variants are able to learn directly from the standard MIPL datasets.

4.2.1 Comparison with Partial-Label Learning Algorithms

Existing partial-label learning algorithms are incapable of handling the multi-instance bag. Therefore,

an aggregated feature representation of the bag is a prerequisite for tackling the MIPL problems with

partial-label learning algorithms. In multi-instance learning, the idea of the embedded-space paradigm

is to explicitly distill the whole bag by defining a mapping function from the bag to a feature vector.

Inspired by the idea, we utilize two schemes to map the bag to a holistic feature vector, respectively.

• Mean scheme: For each bag, the average value of all instances in the corresponding feature dimen-

sion is calculated as the final feature value in that dimension. The dimension of the holistic feature vector

is the same as that of each instance.

• MaxMin scheme: We choose the maximum values of all instances in each feature dimension and

concatenate them with the minimum values of all instances in each feature dimension. Finally, the holistic

feature representation of a bag is distilled with the length of 2d.

The classification results with the varying number of false positive labels r are reported in Table 2, and

Table 3 summarizes the win/tie/loss counts between MIPLGP and each comparing algorithm. MIPLGP

achieves superior or competitive performance against the comparing algorithms. Out of the 180 statistical

tests, we yield the following observations:

• MIPLGP is statistically superior to the partial-label learning algorithms in 99.444% of the cases.

• Regardless of the Mean scheme or MaxMin scheme, MIPLGP consistently outperforms the comparing

partial-label learning algorithms by a notable margin, e.g., more than 5.3%, in almost all cases.

• Compared to MIPLGP-uniform and MIPLGP-naive, MIPLGP achieves statistically favorable perfor-

mance in 86.667% and 93.333% of the cases, respectively.

• In most cases, MIPLGP-uniform is superior to MIPLGP-naive, which means that the label augmenta-

tion strategy plays an important role in MIPLGP. As the average accuracy of MIPLGP-uniform decreases

faster than that of MIPLGP-naive as the number of false positive labels increases, the results demonstrate

that the Dirichlet disambiguation is indispensable especially when there are a lot of false positive labels.

Based on the above observations, we speculate that there are two main reasons why the partial-label

learning algorithms are inferior to MIPLGP. First, as partial label learning algorithms cannot handle multi-

instance bags, their learning procedures can only access the aggregated features from multi-instance bags

using the Mean and MaxMin schemes, which are not as effective as the original features of multi-instance

bags learned by MIPLGP. Second, our proposed label augmentation strategy ensures that the ground-

truth label for each instance in a multi-instance bag exists in the candidate label set, which keeps the

Dirichlet disambiguation strategy from being misled by the instances with only false positive labels in

the candidate label set. However, the partial-label learning algorithms do not have such a strategy and

thus the violation may confuse their disambiguation strategy.

4.2.2 Comparison with Multi-Instance Learning Algorithms

Most of the existing multi-instance learning algorithms are only designed to solve binary classification

problems, and thus are not directly applicable to the MIPL problems.

To make multi-instance learning algorithms fit the MIPL problems, we employ the One vs. Rest (OvR)

decomposition strategy. Specifically, given a multi-instance bag Xi associated with a candidate label set

yi, we assign each label in the candidate label set to the bag in turn and yield |yi| multi-instance bags

with a single bag-level label. For c = 1, 2, · · · , q, we recompose the label c to 1, i.e., positive, and other
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Table 2 Classification accuracy (mean±std) of each comparing algorithm in terms of the different number of false positive

candidate labels [r ∈ {1, 2, 3}]. •/◦ indicates whether the performance of MIPLGP is statistically superior/inferior to the

comparing algorithm on each dataset (pairwise t-test at 0.05 significance level).

Algorithm r MNIST-MIPL FMNIST-MIPL Newsgroups-MIPL Birdsong-MIPL SIVAL-MIPL

MIPLGP

1 0.921±0.018 0.806±0.031 0.432±0.018 0.628±0.012 0.599±0.020

2 0.712±0.045 0.778±0.042 0.424±0.019 0.589±0.020 0.535±0.020

3 0.521±0.084 0.592±0.076 0.373±0.023 0.538±0.014 0.497±0.023

MIPLGP-uniform

1 0.834±0.023• 0.778±0.031• 0.417±0.019• 0.623±0.013• 0.595±0.023

2 0.531±0.070• 0.746±0.042• 0.401±0.025• 0.581±0.022• 0.530±0.019•
3 0.206±0.009• 0.226±0.039• 0.365±0.013 0.526±0.016• 0.489±0.026•

MIPLGP-naive

1 0.522±0.025• 0.570±0.016• 0.422±0.019• 0.551±0.010• 0.585±0.019•
2 0.438±0.049• 0.468±0.065• 0.407±0.025• 0.511±0.026• 0.523±0.018•
3 0.309±0.072• 0.258±0.045• 0.373±0.017 0.464±0.019• 0.480±0.021•

Mean

PL-kNN

1 0.397±0.021• 0.419±0.032• 0.133±0.009• 0.213±0.011• 0.155±0.009•
2 0.337±0.020• 0.360±0.030• 0.148±0.006• 0.197±0.012• 0.138±0.008•
3 0.284±0.023• 0.264±0.032• 0.142±0.010• 0.182±0.009• 0.123±0.009•

CLPL

1 0.644±0.023• 0.734±0.031• 0.131±0.027• 0.330±0.013• 0.239±0.009•
2 0.528±0.033• 0.671±0.023• 0.112±0.015• 0.295±0.012• 0.221±0.012•
3 0.377±0.042• 0.524±0.046 0.111±0.012• 0.282±0.011• 0.200±0.017•

LSB-CMM

1 0.631±0.045• 0.709±0.025• 0.100±0.000• 0.260±0.013• 0.144±0.012•
2 0.416±0.047• 0.560±0.059• 0.100±0.000• 0.242±0.013• 0.116±0.014•
3 0.277±0.038• 0.295±0.032• 0.100±0.000• 0.218±0.011• 0.095±0.015•

SURE

1 0.666±0.027• 0.753±0.019• 0.358±0.019• 0.345±0.008• 0.313±0.022•
2 0.512±0.031• 0.685±0.013• 0.300±0.013• 0.319±0.008• 0.284±0.019•
3 0.344±0.075• 0.441±0.063• 0.251±0.017• 0.308±0.013• 0.256±0.013•

GM-PLL

1 0.248±0.014• 0.268±0.030• 0.183±0.012• 0.146±0.018• 0.175±0.013•
2 0.260±0.022• 0.251±0.019• 0.180±0.015• 0.106±0.012• 0.160±0.014•
3 0.235±0.028• 0.246±0.021• 0.157±0.015• 0.092±0.012• 0.136±0.013•

PL-AGGD

1 0.643±0.021• 0.714±0.017• 0.325±0.009• 0.332±0.010• 0.312±0.023•
2 0.535±0.034• 0.642±0.026• 0.256±0.015• 0.304±0.013• 0.277±0.019•
3 0.363±0.039• 0.429±0.040• 0.213±0.015• 0.292±0.015• 0.244±0.011•

MaxMin

PL-kNN

1 0.388±0.023• 0.309±0.029• 0.119±0.004• 0.274±0.009• 0.177±0.007•
2 0.330±0.016• 0.288±0.019• 0.135±0.008• 0.270±0.006• 0.153±0.009•
3 0.266±0.025• 0.239±0.021• 0.138±0.007• 0.250±0.011• 0.136±0.011•

CLPL

1 0.481±0.020• 0.364±0.026• 0.246±0.009• 0.361±0.016• 0.266±0.011•
2 0.396±0.028• 0.332±0.021• 0.200±0.009• 0.328±0.014• 0.223±0.010•
3 0.334±0.039• 0.332±0.028• 0.166±0.018• 0.300±0.015• 0.199±0.014•

LSB-CMM

1 0.372±0.099• 0.238±0.073• 0.221±0.018• 0.319±0.011• 0.248±0.015•
2 0.324±0.038• 0.284±0.039• 0.146±0.039• 0.292±0.014• 0.200±0.017•
3 0.220±0.017• 0.210±0.017• 0.113±0.021• 0.272±0.020• 0.157±0.017•

SURE

1 0.528±0.021• 0.404±0.023• 0.316±0.015• 0.381±0.013• 0.372±0.022•
2 0.415±0.028• 0.351±0.025• 0.274±0.013• 0.371±0.015• 0.324±0.013•
3 0.321±0.030• 0.304±0.029• 0.245±0.014• 0.341±0.014• 0.288±0.011•

GM-PLL

1 0.386±0.024• 0.195±0.016• 0.209±0.020• 0.180±0.019• 0.143±0.013•
2 0.346±0.030• 0.225±0.019• 0.181±0.018• 0.139±0.023• 0.121±0.014•
3 0.294±0.024• 0.221±0.013• 0.163±0.019• 0.121±0.020• 0.104±0.012•

PL-AGGD

1 0.514±0.024• 0.392±0.016• 0.289±0.014• 0.370±0.013• 0.361±0.021•
2 0.428±0.035• 0.346±0.019• 0.249±0.013• 0.353±0.014• 0.310±0.013•
3 0.333±0.039• 0.324±0.025• 0.212±0.011• 0.328±0.015• 0.277±0.013•
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Table 3 Win/tie/loss counts on the classification performance of MIPLGP against the comparing PLL algorithms.

MIPLGP against
In totalPL-kNN CLPL LSB-CMM SURE GM-PLL PL-AGGD

r = 1 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 60/0/0

r = 2 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 60/0/0

r = 3 10/0/0 9/1/0 10/0/0 10/0/0 10/0/0 10/0/0 59/1/0

In total 30/0/0 29/1/0 30/0/0 30/0/0 30/0/0 30/0/0 179/1/0

Table 4 Classification accuracy (mean±std) of each comparing algorithm (with one false positive candidate label [r = 1]).

•/◦ indicates whether the performance of MIPLGP is statistically superior/inferior to the comparing algorithm on each

dataset (pairwise t-test at 0.05 significance level).

Algorithm MNIST-MIPL FMNIST-MIPL Newsgroups-MIPL Birdsong-MIPL SIVAL-MIPL

MIPLGP 0.921±0.018 0.806±0.031 0.432±0.018 0.628±0.012 0.599±0.020

VWSGP 0.402±0.026• 0.422±0.028• 0.098±0.013• 0.250±0.047• 0.050±0.009•
VGPMIL 0.469±0.047• 0.455±0.034• 0.097±0.010• 0.080±0.034• 0.041±0.006•
LM-VGPMIL 0.471±0.021• 0.486±0.036• 0.101±0.008• 0.081±0.042• 0.045±0.008•
MIVAE 0.793±0.019• 0.638±0.213 0.135±0.245• 0.067±0.091• 0.068±0.119•

labels to 0, i.e., negative. After recomposing all multi-instance bags for the label c, we train and test the

c-th classifier. For an unseen multi-instance bag, we can obtain q predictions from the q classifiers. If

only one of the predictions is positive, the corresponding class label of the positive prediction is regarded

as the classification result of the bag. If the number of positive predictions among the q predictions is

greater than one, the class label corresponding to the classifier with the largest prediction confidence

is selected as the classification result of the bag. If the predictions of all q classifiers are negative, the

classification result is the class label with the lowest prediction confidence.

The computational cost of multi-instance learning algorithms rises with the increase of false positive

labels, and the classification accuracy decreases accordingly. We present the classification accuracy of

multi-instance learning algorithms with one false positive label in Table 4, which reveals that:

• It is obvious that MIPLGP achieves significantly better performances against the comparing multi-

instance learning algorithms in almost all cases.

• Due to the noisy bag-level labels in the degenerated datasets, the comparing multi-instance learning

algorithms can learn well in multi-instance learning but cannot effectively work on the MIPL datasets,

such as Newsgroups-MIPL, Birdsong-MIPL, and SIVAL-MIPL. This phenomenon indicates that it is neces-

sary to propose tailored algorithms for solving the MIPL problems effectively.

4.3 Further Analyses

As defined in Eqs. (2), (3), and (6), the transformed labels are affected by the Dirichlet prior αε. When

αε approaches 0, the transformed labels and variances of non-candidate labels become negative infinity

and positive infinity, respectively, which makes the Gaussian processes regression impossible. To avoid

this issue, the Dirichlet prior plays a role in restricting the transformed labels of the non-candidate labels

finite. At the same time, the consequential labels and variances of candidate labels are negative values

and positive ones that come near to 0. During the iterations, the transformed results of the ground-truth

labels are closer to 0 than those of the false positive labels, and the differences between the ground-truth

labels and the false positive ones become larger.

The classification accuracy of MIPLGP with the varying number of false positive labels r ∈ {1, 2, 3, 4, 5}
and the Dirichlet prior αε ∈ {0.0001, 0.001, 0.01} is shown in Figure 4. There are several observations:

• On MNIST-MIPL and Newsgroups-MIPL datasets, the smaller αε can achieve better results, while the

results are reversed on SIVAL-MIPL dataset.



Wei Tang, et al. Sci China Inf Sci 13

1 2 3
0.3

0.4

0.5

0.6

0.7

0.8

0.9 = 0.0001
= 0.001
= 0.01

1 2 3

0.5

0.6

0.7

0.8

= 0.0001
= 0.001
= 0.01

1 2 3 4 50.1

0.2

0.3

0.4

= 0.0001
= 0.001
= 0.01

1 2 3 4 5
0.4

0.5

0.6
= 0.0001
= 0.001
= 0.01

1 2 3 4 5
0.4

0.5

0.6 = 0.0001
= 0.001
= 0.01

MNIST-MIPL

r (# the false positive labels)

A
cc

u
ra

cy

FMNIST-MIPL

r (# the false positive labels)

A
cc

u
ra

cy

Newsgroups-MIPL

r (# the false positive labels)

A
cc

u
ra

cy

Birdsong-MIPL

r (# the false positive labels)

A
cc

u
ra

cy

SIVAL-MIPL

r (# the false positive labels)

A
cc

u
ra

cy

Figure 4 Classification accuracy of MIPLGP on the MIPL datasets with varying r and αε.

• On Birdsong-MIPL datasets, the differences between the varying αε are slight. Similarly, there is no

obvious difference between the αε = 0.0001 and αε = 0.001 on FMNIST-MIPL dataset.

• Different datasets have diverse optimums of the Dirichlet prior, which depend mainly on the char-

acteristics of the MIPL datasets themselves.

In our experiments on MIPLGP and its variants, αε = 0.0001 performs satisfactorily on all datasets.

5 Conclusion

In this paper, we formalize a novel learning framework named multi-instance partial-label learning

(MIPL), where each training sample is associated with not only multiple instances but also multiple

candidate labels that contain only one ground-truth label. Although the MIPL problems widely exist

in many real-world applications, to the best of our knowledge, we are the first to establish a formal

MIPL framework and propose the tailored MIPLGP algorithm for learning from MIPL data. Specifically,

MIPLGP transforms the candidate label sets from the augmented label space into a logarithmic space,

yielding a Gaussian likelihood and transforming the classification problem into a regression problem. To

solve the regression problem, MIPLGP induces an efficient Gaussian processes model with GPU accelera-

tions. Extensive comparative studies validate that existing multi-instance and partial-label algorithms are

not able to handle the MIPL problems, and MIPLGP performs significantly better than other algorithms

under the MIPL setting. In the future, there are many directions to explore. For example, exploiting the

instance-candidate label dependencies or exploring the theoretical properties of MIPL.
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34 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

35 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking machine

learning algorithms. CoRR, abs/1708.07747, 2017.

36 Ken Lang. Newsweeder: Learning to filter netnews. In Proceedings of the 12nd International Conference on Machine

Learning, Tahoe City, CA, USA, pages 331–339, 1995.

37 Forrest Briggs, Xiaoli Z. Fern, and Raviv Raich. Rank-loss support instance machines for MIML instance annotation.

In the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, pages

534–542, 2012.

38 Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active learning. In Advances in Neural Information

Processing Systems 20, Vancouver, BC, Canada, pages 1289–1296, 2007.

39 Melih Kandemir, Manuel Haußmann, Ferran Diego, Kumar T. Rajamani, Jeroen van der Laak, and Fred A. Hamprecht.

Variational weakly supervised gaussian processes. In Proceedings of the 27th British Machine Vision Conference, York,

UK, pages 71.1–71.12, 2016.
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Appendix A The MIPL Datasets

In this section, we provide the details of the MIPL datasets, i.e., MNIST-MIPL, FMNIST-MIPL, Newsgroups-MIPL,

Birdsong-MIPL, and SIVAL-MIPL.

For MNIST-MIPL, FMNIST-MIPL, and Newsgroups-MIPL datasets, we need to choose the targeted class labels and

the reserved class labels to provide each multi-instance bag with positive instances and negative ones. For MNIST-MIPL

dataset, we extract {0, 2, 4, 6, 8} as five target classes for providing the positive instances according to the corresponding

class and draw all negative ones from the reserved classes {1, 3, 5, 7, 9} randomly. For FMNIST-MIPL dataset, the targeted

class labels and the reserved class labels are {T-shirt, Trouser, Coat, Sneaker, Bag} and {Pullover, Dress, Sandal, Shirt,

Ankle boot}, respectively. Newsgroups-MIPL, the dataset is widely used in binary multi-instance learning, where each

instance is represented by the top 200 TF-IDF features, and each positive bag contains 3% positive instances drawn from

the target class. Similarly, we represent each instance by the top 200 TF-IDF features in Newsgroups-MIPL, and Table A1

summarizes the targeted class labels and the reserved class labels of Newsgroups-MIPL dataset.

Table A1 The targeted class labels and reserved class labels of Newsgroups-MIPL dataset.

Targeted class labels Reserved class labels

alt.atheism comp.graphics

comp.os.ms-windows.misc comp.sys.ibm.pc.hardware

comp.sys.mac.hardware comp.windows.x

misc.forsale rec.motorcycles

rec.autos rec.sport.baseball

rec.sport.hockey sci.crypt

sci.med sci.electronics

sci.space talk.politics.guns

soc.religion.christian talk.politics.misc

talk.politics.mideast talk.religion.misc

The Birdsong dataset is proposed in multi-instance multi-label learning, which contains 548 multi-instance bags totalling

10232 instances. Each instance is represented by a 38-dimensional feature vector and associated with a single label, which

is chosen from 13 targeted class labels or 1 negative class label. In Birdsong-MIPL, the 13 targeted class labels and the

negative class label are regarded as the targeted class labels and the reserved class label, respectively.

SIVAL is a multi-instance learning dataset for content-based image retrieval with 1500 images. Each image is a multi-

instance bag, which is associated with one of 25 class labels and consisted of 31 or 32 instances. In addition, each instance

is represented by a 30-dimensional feature vector. To yield the SIVAL-MIPL, we only need to generate the false positive

labels for each image. Specifically, we treat the 25 class labels as the targeted class labels and sample r false positive labels

from the targeted class labels excluding the ground-truth label randomly.
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