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Abstract
Multi-instance partial-label learning (MIPL) ad-
dresses scenarios where each training sample is
represented as a multi-instance bag associated with
a candidate label set containing one true label and
several false positives. Existing MIPL algorithms
have primarily focused on mapping multi-instance
bags to candidate label sets for disambiguation,
disregarding the intrinsic properties of the label
space and the supervised information provided by
non-candidate label sets. In this paper, we pro-
pose an algorithm named ELIMIPL, i.e., Exploit-
ing conjugate Label Information for Multi-Instance
Partial-Label learning, which exploits the conju-
gate label information to improve the disambigua-
tion performance. To achieve this, we extract the
label information embedded in both candidate and
non-candidate label sets, incorporating the intrinsic
properties of the label space. Experimental results
obtained from benchmark and real-world datasets
demonstrate the superiority of the proposed ELIM-
IPL over existing MIPL algorithms and other well-
established partial-label learning algorithms.

1 Introduction
Weakly supervised learning has emerged as a powerful strat-
egy in scenarios with limited annotated data. Based on label
quality and quantity, weak supervision can be broadly cat-
egorized into three types: inaccurate, inexact, and incom-
plete supervision [Zhou, 2018]. Inexact supervision refers
to a coarse correspondence between instances and labels. To
work with inexact supervision, these are two prevalent learn-
ing paradigms, i.e., multi-instance learning (MIL) [Amores,
2013; Carbonneau et al., 2018; Ilse et al., 2018; Zhang et al.,
2022c,b] and partial-label learning (PLL) [Cour et al., 2011;
Lyu et al., 2020; Zhang et al., 2022a; He et al., 2022; Gong
et al., 2022; Li et al., 2023]. In MIL, a sample is represented
as a bag of instances and associated with a single bag-level
label, while the instance-level labels are inaccessible to the
learner. In PLL, a sample is represented as a single instance
and linked to a candidate label set, including one true label

∗Corresponding author

k1k2k3k4k5k6k7

crowd-sourced
candidate labels

ground-truth
labels
false positive
labels
non-candidate
labels
zero entries

(a) legends

m = + +

··
·

··
·

··
·

··
·

k = 7
complete

label matrix Y

candidate label matrix S

non-candidate
label matrix S̄

YF YT (sparse)

(b)
Figure 1: (a) A multi-instance bag is labeled with a candidate label
set S = {k1, k2, k5, k7}. (b) The decomposition of the complete
label matrix, where m and k represent the number of multi-instance
bags and categories, respectively.

and multiple false positives. Therefore, MIL and PLL can be
perceived as two sides of the same coin: inexact supervision
within MIL manifests in the instance space, whereas inexact
supervision appears in the label space within PLL.

However, many tasks exhibit a phenomenon of dual in-
exact supervision, where ambiguity arises in both instance
and label spaces. To work with the dual inexact supervision,
Tang et al. [2024] introduced a learning paradigm known as
multi-instance partial-label learning (MIPL) and developed
a Gaussian Processes-based algorithm (MIPLGP), which de-
rives a bag-level predictor by aggregating predictions of all
instances within the same bag. To capture global representa-
tions for multi-instance bags, an algorithm named DEMIPL
equipped with an attention mechanism is introduced [Tang et
al., 2023]. The existing algorithms mainly operate in the in-
stance space and only utilize the candidate label information.

The non-candidate label set holds crucial roles in MIPL. In
histopathological image classification, images are commonly
segmented into patches [Campanella et al., 2019; Lu et al.,
2021], and their labels may come from crowd-sourced an-
notators rather than expert pathologists [Irshad et al., 2017;
Grote et al., 2019]. Figure 1(a) illustrates that crowd-sourced
annotators treat an image as a multi-instance bag Xi =



   prob. on the true label avg. prob. on S avg. prob. on S̄
pr

ob
ab

ili
ty

pr
ob

ab
ili

ty

epoch epoch
Figure 2: Predicted probabilities of DEMIPL (left) and ELIMIPL
(right) on the sample in CRC-MIPL-Row dataset.

{xi,1,xi,2, · · · ,xi,9} and provide a candidate label set Si =
{k1, k2, k5, k7}, whose candidate label matrix can be written
as Si = [1, 1, 0, 0, 1, 0, 1]. Similarly, the non-candidate label
set S̄i = {k3, k4, k6} corresponds to the non-candidate label
matrix S̄i = [0, 0, 1, 1, 0, 1, 0], indicating that Xi must not
belong to categories k3, k4, or k6. Therefore, we can extract
exact supervision from the non-candidate label set. As de-
picted in Figure 1(b), we decompose a complete label matrix
Y into a candidate label matrix S and a non-candidate label
matrix S̄. Subsequently, S may be further disintegrated into
a false positive label matrix YF and a true label matrix YT ,
i.e., Y = S + S̄ = YF + YT + S̄. Notably, YT is sparse,
as each row must have one and only one non-zero element.
However, the current MIPL algorithms have predominantly
concentrated on the mappings from multi-instance bags to S,
neglecting the sparsity of YT and the information from S̄.

Consequently, Figure 2 illustrates the predicted probabili-
ties on the true label, along with the average predicted proba-
bilities on each candidate label and non-candidate label. The
left side depicts the probabilities of the DEMIPL, revealing
proximity in the average predicted probabilities on candi-
date and non-candidate labels. This observation indicates
that DEMIPL encounters difficulty in effectively discerning
between candidate and non-candidate labels. To address this
challenge, we introduce the concept of conjugate label in-
formation (CLI), encapsulating information from both candi-
date and non-candidate label sets, along with the sparsity of
the true label matrix. The right side in Figure 2 shows the
predicted probabilities when exploiting the CLI. It is evident
that (a) the predicted probabilities on the true label exhibit
a noticeable increase, (b) the average predicted probabilities
on the non-candidate label are reduced, and (c) the average
probabilities on each candidate label and non-candidate label
are distinctly separated. This suggests that the CLI conduce
to train a more discriminative MIPL classifier.

In this paper, we present an algorithm named ELIM-
IPL, i.e., Exploiting conjugate Label Information for Multi-
Instance Partial-Label learning. Firstly, we introduce a
scaled additive attention mechanism to aggregate each multi-
instance bag into a bag-level feature representation. Sec-
ondly, to enhance the utilization of candidate label informa-
tion, we leverage the mappings from the bag-level features to
the candidate label sets, coupled with the sparsity of the can-
didate label matrix. Lastly, to incorporate the non-candidate
label information, we propose an inhibition loss to diminish
the model’s predictions on the non-candidate labels. To the
best of our knowledge, we are the first to introduce the scaled
additive attention mechanism and the CLI in MIPL. Extensive
experimental results demonstrate that ELIMIPL outperforms
the state-of-the-art MIPL algorithms and the PLL algorithms.

The remainder is organized as follows. Firstly, we review
related work in Section 2. Secondly, we present the proposed
ELIMIPL in Section 3 and report the experimental results in
Section 4. Lastly, we conclude this paper in Section 5.

2 Related Work
2.1 Multi-Instance Learning
Originating from drug activity prediction [Dietterich et al.,
1997], MIL has found extensive adoption in diverse applica-
tions, including text classification [Zhou et al., 2009; Zhang,
2021] and image annotation [Wang et al., 2018]. Contem-
porary deep MIL approaches predominantly rely on atten-
tion mechanisms [Wang et al., 2022b; Chen et al., 2022; Tan
et al., 2023]. Ilse et al. [2018] introduced attention mech-
anisms to aggregate each multi-instance bag into a feature
vector. For multi-classification tasks, Shi et al. [2020] pro-
posed a loss-based attention mechanism to learn instance-
level weights, predictions, and bag-level predictions. Fur-
thermore, researchers have explored the intrinsic attributes
of attention mechanisms to improve performance [Cui et al.,
2023; Xiang et al., 2023]. While these approaches achieve
promising results in cases with exact bag-level labels, they
face challenges in learning from ambiguous bag-level labels.

2.2 Partial-Label Learning
Recent PLL approaches heavily rely on deep learning tech-
niques. Yao et al. [2020] employed deep convolutional neu-
ral networks for feature extraction and utilized the expo-
nential moving average technique to uncover latent true la-
bels. Building on the empirical risk minimization principle,
Lv et al. [2020] devised a classifier-consistent risk estima-
tor that progressively identifies true labels. Similarly, Feng
et al. [2020] delved into the generation process of partial-
labeled data, proposing both a risk-consistent approach and
a classifier-consistent approach. Taking a more generalized
stance, Wen et al. [2021] presented a weighted loss function
capable of accommodating various methods through distinct
weight assignments. Furthermore, Wu et al. [2022] proposed
a supervised loss to constrain outputs on non-candidate la-
bels, coupled with consistency regularization on candidate
labels. While the supervised loss bears resemblance to our
inhibition loss, our proposed CLI loss incorporates additional
components, namely the mapping loss and the sparse loss.
Although these methods effectively learn from partial-labeled
data, they lack the capability to manage multi-instance bags.

2.3 Multi-Instance Partial-Label Learning
In contrast to the inherent limitations of addressing only
unilateral inexact supervision in MIL and PLL, MIPL pos-
sesses the capability to work with dual inexact supervision.
To the best of our knowledge, there are only two viable
MIPL algorithms. Tang et al. [2024] is the first to introduce
the framework of MIPL along with a Gaussian processes-
based algorithm (MIPLGP), which follows an instance-space
paradigm. MIPLGP begins by augmenting a negative class
for each candidate label set, subsequently treating the candi-
date label set of each multi-instance bag as that of each in-
stance within the bag. Finally, it employs the Dirichlet dis-
ambiguation strategy and the Gaussian processes regression
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Figure 3: The pipeline of ELIMIPL, where Lma, Lsp, and Lin refer to mapping loss, sparsity loss, and inhibition loss, respectively.

model for disambiguation. Differing from MIPLGP, DEMIPL
follows the embedded-space paradigm and aggregates each
multi-instance bag into a feature representation and employs
a momentum-based disambiguation strategy to find true la-
bels from candidate label sets [Tang et al., 2023]. However,
both methods primarily depend on mapping from instances
or multi-instance bags to candidate label sets for disambigua-
tion, without considering the proposed CLI in this paper.

3 Methodology
3.1 Preliminaries
In this study, we define a MIPL training dataset as D =
{(Xi,Si) | 1 ≤ i ≤ m}, comprising m multi-instance
bags and their corresponding candidate label sets. Specif-
ically, a candidate label set Si consists of one true label
and multiple false positive labels, but the true label is un-
known. It is crucial to note that a bag contains at least
one instance pertaining to the true label, while excluding
any instances corresponding to false positive labels. The in-
stance space is denoted as X ∈ Rd, while the label space
Y = {1, 2, · · · , k} encompasses k class labels. The i-th
bag Xi = {xi,1,xi,2, · · · ,xi,ni} comprises ni instances of
dimension d. Both the candidate label set Si and the non-
candidate label set S̄i are proper subsets of the label space Y ,
satisfying the conditions |Si| + |S̄i| = |Y| = k, where | · |
denotes the cardinality of a set.

The pipeline of the proposed ELIMIPL is depicted in Fig-
ure 3, which contains three main components: an instance-
level feature extractor, a scaled additive attention mechanism,
and a classifier. When presented with a multi-instance bag
Xi along with its associated candidate label set Si and non-
candidate label set S̄i, we initially employ a feature extrac-
tor to procure instance-level feature representations. Subse-
quently, the scaled additive attention mechanism is applied to
aggregate a bag of instances into a unified bag-level feature
representation. Finally, the classifier is invoked to estimate
the class probabilities based on the bag-level features. To uti-
lize the CLI, we introduce a mapping loss Lma and a sparsity
loss Lsp to disambiguate the candidate label sets, along with
an inhibition loss Lin to suppress the model’s prediction over
the non-candidate label sets.

3.2 Instance-Level Feature Extractor
For a given multi-instance bag Xi = {xi,1,xi,2, · · · ,xi,ni}
with ni instances, instance-level feature representations Hi

are learned using a feature extractor ψ(·) as follows:

Hi = ψ(Xi) = {hi,1,hi,2, · · · ,hi,ni
}, (1)

where hi,j ∈ Rl indicates the feature representation of the
j-th instance within the i-th multi-instance bag, and ψ(·) is a
neural network comprised of two components, i.e., ψ(Xi) =
ψ2(ψ1(Xi)). Here, ψ1(·) is a feature extractor that can be tai-
lored to the specific characteristics of the datasets, and ψ2(·)
is composed of fully connected layers that map instance-level
features to an embedded space of dimension l.

3.3 Scaled Additive Attention Mechanism
To aggregate instance-level features into bag-level represen-
tations, we introduce a scaled additive attention mechanism
specifically designed for MIPL. The existing attention mech-
anism for MIPL utilizes the sigmoid function for calculat-
ing attention scores, followed by normalization [Tang et al.,
2023]. The attention scores derived through the sigmoid func-
tion are constrained within the range (0, 1), leading to a lim-
ited distinction between instances. Therefore, we introduce
an additive attention mechanism calculating attention scores
by the softmax function to distinguish instances, equipped
with a scaling factor to prevent vanishing gradients [Vaswani
et al., 2017]. Specifically, we first denote the output of the ad-
ditive attention mechanism as ξ(hi,j), quantifying the impact
of the j-th instance on the i-th bag as follows:

ξ(hi,j) = W>(tanh(W>
t hi,j +bt)� sigm(W>

s hi,j +bs)),
(2)

where W>, W>
t , W>

s , bt, and bs are learnable parameters.
tanh(·) and sigm(·) are the hyperbolic tangent and sigmoid
functions, respectively. The operator� denotes element-wise
multiplication. Then, we normalize ξ(hi,j) using softmax
with a scaling factor 1/

√
l to derive the attention score:

ai,j =
exp

(
ξ (hi,j) /

√
l
)

∑ni

j′=1 exp
(
ξ (hi,j′) /

√
l
) , (3)



where ai,j represents the attention score of the j-th instance
in the i-th bag. Finally, we consolidate the instance-level fea-
tures into a bag-level representation, as demonstrated below:

zi =

ni∑
j=1

ai,jhi,j , (4)

where zi represents the bag-level representation of the i-
th multi-instance bag. The bag-level representations of all
multi-instance bags in the training dataset are denoted by Z .

3.4 Conjugate Label Information
Candidate Label Information Once the bag-level feature
representations are acquired, the subsequent task is to dis-
ambiguate the candidate label set. The disambiguation en-
tails establishing the mapping relationship from the bag-level
features to their corresponding candidate label set. The goal
of precise mapping is to guide the classifier to assign higher
class probabilities to true labels and lower probabilities to
false positive labels. To attain this objective, we employ a
weighted mapping loss function:

Lma(Z,S) = − 1

m

m∑
i=1

∑
c∈Si

w
(t)
i,c log(fc(zi)), (5)

where f is the classifier, and fc(·) represents the classifier’s
prediction probability for the candidate label c. w(t)

i,c denotes
the weight assigned to the prediction of the c-th class at the t-
th epoch, using the features of the i-th bag as input for the
classifier. For candidate labels, we initialize w(0)

i,c = 1
|Si|

through an averaging approach. During training, we update
w

(t)
i,c by computing a weighted sum of the classifier’s outputs

at both the previous epoch and current epoch as follows:

w
(t)
i,c = ρ(t)w

(t−1)
i,c + (1− ρ(t))

fc(zi)∑
c′∈Si fc′(zi)

, (6)

where ρ(t) = (T − t)/T is dynamically adjusted across
epochs, and T is the maximum of the training epochs.

While the mapping loss can assess the relative labeling
probabilities of candidate labels, it fails to capture the mu-
tually exclusive relationships among the candidate labels. To
address this issue in PLL, Feng and An [2019] introduced the
maximum infinity norm on the predicted probabilities of all
classes and alternately optimize the maximum infinity norm
by solving k independent quadratic programming problems.
However, as depicted in Figure 1(b), we observe that each row
of the true label matrix exhibits sparsity. Although the true
labels remain inaccessible during the training process, we en-
courage the classifier to generate sparse prediction probabili-
ties for the candidate labels. Specifically, the goal is to push
the prediction probability of the unknown true label toward
1 while simultaneously driving the prediction probabilities of
other candidate labels toward 0. Therefore, we directly cap-
ture the mutually exclusive relationships among the candidate
labels by implementing the sparsity loss, as detailed below:

Lsp(S) =
1

m

m∑
i=1

‖P i � Si‖0, (7)

Algorithm 1 Training Procedure of ELIMIPL

Inputs:
D : MIPL training set {(Xi,Si) | 1 ≤ i ≤ m}
µ, γ : Weights for sparsity loss and inhibition loss
T : Maximum number of epochs
Process:

1: Initialize uniform weights w(0)
i,c (c ∈ Si)

2: for t = 1 to T do
3: Fetch a mini-batch B from D
4: for X ∈ B do
5: Extract instance-level features using Equation (1)
6: Calculate attention scores using Equations (2, 3)
7: Aggregate instance-level features into bag-level fea-

ture representations via Equation (4)
8: Update weights w(t)

i,c based on Equation (6)
9: Calculate Lma, Lsp, and Lin via Equations (5, 7, 8)

10: Calculate total loss L as in Equation (9)
11: Set gradient −5Φ L
12: Update Φ using optimizer
13: end for
14: end for

where P i and Si is the prediction probabilities and the candi-
date label set matrix of the i-th bag, respectively. � denotes
element-wise multiplication. Since minimizing the `0 norm
is NP-hard, we employ the `1 norm as a surrogate for the `0
norm, promoting sparsity while allowing for efficient opti-
mization [Tibshirani, 1996; Wright and Ma, 2022].
Non-candidate Label Information For a multi-instance
bag Xi linked to a candidate label set Si, the non-candidate
label set S̄i complements the candidate label set Si within the
label space Y . As the label space has a fixed size, an an-
tagonistic relationship arises between the non-candidate and
candidate label sets. To enhance the classifier’s prediction
probabilities for the candidate label set, a natural strategy is to
diminish the classifier’s prediction probabilities for the non-
candidate label set. Motivated by this insight, we introduce
an inhibition loss as follows:

Lin(Z, S̄) = − 1

m

m∑
i=1

∑
c̄∈S̄i

log(1− fc̄(zi)), (8)

where fc̄(·) denotes the classifier’s prediction probability
over the non-candidate label c̄.
CLI Loss During the training, CLI is formed by a loss func-
tion named CLI loss that is a weighted fusion of the mapping
loss, sparsity loss, and inhibition loss, as shown below:

L = Lma(Z,S) + µLsp(S) + γLin(Z, S̄), (9)

where µ and γ represent the weighting coefficients for the
sparsity loss and the inhibition loss, respectively.

Algorithm 1 summarizes the training procedure of ELIM-
IPL. Firstly, the algorithm initializes the weights for the map-
ping loss uniformly (Step 1). Subsequently, instance-level
features are extracted and aggregated into bag-level features
within each mini-batch (Steps 5-8). The algorithm then up-
dates the weights for the mapping loss and calculates the total



Dataset #bag #ins max. #ins min. #ins avg. #ins #dim #class avg. #CLs domain
MNIST-MIPL (MNIST) 500 20664 48 35 41.33 784 5 2, 3, 4 image
FMNIST-MIPL (FMNIST) 500 20810 48 36 41.62 784 5 2, 3, 4 image
Birdsong-MIPL (Birdsong) 1300 48425 76 25 37.25 38 13 2, 3, 4 biology
SIVAL-MIPL (SIVAL) 1500 47414 32 31 31.61 30 25 2, 3, 4 image
CRC-MIPL-Row (C-Row) 7000 56000 8 8 8 9 7 2.08 image
CRC-MIPL-SBN (C-SBN) 7000 63000 9 9 9 15 7 2.08 image
CRC-MIPL-KMeansSeg (C-KMeans) 7000 30178 6 3 4.311 6 7 2.08 image
CRC-MIPL-SIFT (C-SIFT) 7000 175000 25 25 25 128 7 2.08 image

Table 1: Characteristics of the benchmark and real-world MIPL datasets.

loss function (Steps 9-11). Finally, the model is optimized us-
ing gradient descent (Steps 12 and 13).

4 Experiments
In this section, we begin by introducing the experimental con-
figurations, including the datasets, comparative algorithms,
and the parameters used in the experiments. Subsequently,
we present the experimental results on both benchmark and
real-world datasets. Finally, we conduct further analysis to
gain deeper insights into the impact of CLI.

4.1 Experimental Configurations
Datasets We employ four benchmark MIPL datasets [Tang
et al., 2024, 2023]: MNIST-MIPL, FMNIST-MIPL, Birdsong-
MIPL, and SIVAL-MIPL, spanning diverse domains such as im-
age analysis and biology [LeCun et al., 1998; Xiao et al.,
2017; Briggs et al., 2012; Settles et al., 2007]. The char-
acteristics of the datasets are presented in Table 1, where the
abbreviations within parentheses in the first column represent
the abbreviated names of the MIPL datasets. The dataset in-
cludes quantities of multi-instance bags and total instances,
denoted as #bag and #ins, respectively. Additionally, we use
max. #ins, min. #ins, and avg. #ins to indicate the maximum,
minimum, and average instance count within all bags. The
dimensionality of the instance-level feature is represented by
#dim. Labeling details are elucidated using #class and avg.
#CLs, signifying the length of the label space and the average
length of candidate label sets, respectively. For a compre-
hensive performance assessment, we vary the count of false
positive labels, denoted as r (|Si| = r + 1).

CRC-MIPL dataset is a real-world MIPL dataset for col-
orectal cancer classification. We utilize multi-instance fea-
tures generated by four image bag generators [Wei and Zhou,
2016]: Row [Maron and Ratan, 1998], single blob with
neighbors (SBN) [Maron and Ratan, 1998], k-means segmen-
tation (KMeansSeg) [Zhang et al., 2002], and scale-invariant
feature transform (SIFT) [Lowe, 2004].

The appendix contains detailed information about the
datasets and the four image bag generators.

Comparative Algorithms We conduct a comprehensive
comparison involving ELIMIPL along with two established
MIPL algorithms: MIPLGP [Tang et al., 2024] and DEMIPL
[Tang et al., 2023]. These represent the entirety of avail-
able MIPL methods. Furthermore, we include four PLL al-
gorithms: PRODEN [Lv et al., 2020], RC [Feng et al., 2020],
LWS [Wen et al., 2021], and PL-AGGD [Wang et al., 2022a].

The first three algorithms can be equipped with diverse back-
bone networks, such as linear models and MLP. Due to spa-
tial constraints, we present the results obtained from the lin-
ear models in the main body, while the results with MLP are
shown in the appendix. Parameters for all algorithms are se-
lected based on recommendations from original literature or
refined through our search for enhanced outcomes.

Since PLL algorithms are not directly tailored for MIPL
data, two common strategies, known as the Mean strategy
and the MaxMin strategy, are employed to adapt MIPL data
for PLL algorithms [Tang et al., 2024]. The Mean strategy in-
volves calculating average feature values across all instances
within a bag, resulting in a bag-level feature representation.
In contrast, the MaxMin strategy identifies both the maximum
and minimum feature values for each dimension among in-
stances within a bag, and then concatenates these values to
form a bag-level feature representation.

Implementation We implement ELIMIPL using PyTorch
and execute it on a single NVIDIA Tesla V100 GPU. We uti-
lize the stochastic gradient descent (SGD) optimizer with a
momentum value of 0.9 and a weight decay of 0.0001. The
initial learning rate is selected from the set {0.01, 0.05} and
accompanied by a cosine annealing technique. We set the
number of epochs uniformly to 100 for all datasets. For the
MNIST-MIPL and FMNIST-MIPL datasets, µ is set to 1 or 0.1, γ
is chosen from {0.1, 0.5}, and the feature extraction network
ψ1(·) is a two-layer convolutional neural network. For the re-
maining datasets, we set both µ and γ to 10, and ψ1(·) is an
identity transformation. The feature transformation network
ψ2(·) is implemented by a fully connected network, with the
dimension l set to 512 for the CRC-MIPL dataset and 128 for
the other datasets. The way of dataset partitioning is consis-
tent with that of DEMIPL. We conduct ten random train/test
splits with a ratio of 7 : 3. We report the mean accuracies
and standard deviations obtained from the ten runs, with the
highest accuracy highlighted in bold. The code of ELIMIPL
can be found at https://github.com/tangw-seu/ELIMIPL.

4.2 Results on the Benchmark Datasets
Table 2 presents the results of ELIMIPL and the compara-
tive algorithms on benchmark datasets, considering varying
numbers of false positive labels (r ∈ {1, 2, 3}). Compared
to MIPL algorithms, ELIMIPL consistently achieves higher
average accuracy than DEMIPL and MIPLGP. Furthermore,
in contrast to PLL algorithms, ELIMIPL significantly outper-
forms them in all cases.

For the MNIST-MIPL and FMNIST-MIPL datasets, each with

https://github.com/tangw-seu/ELIMIPL


Algorithm r MNIST FMNIST Birdsong SIVAL

ELIMIPL

1 .992±.007 .903±.018 .771±.018 .675±.022
2 .987±.010 .845±.026 .745±.015 .616±.025
3 .748±.144 .702±.055 .717±.017 .600±.029

DEMIPL

1 .976±.008 .881±.021 .744±.016 .635±.041
2 .943±.027 .823±.028 .701±.024 .554±.051
3 .709±.088 .657±.025 .696±.024 .503±.018

MIPLGP

1 .949±.016 .847±.030 .716±.026 .669±.019
2 .817±.030 .791±.027 .672±.015 .613±.026
3 .621±.064 .670±.052 .625±.015 .569±.032

Mean

PRODEN

1 .605±.023 .697±.042 .296±.014 .219±.014
2 .481±.036 .573±.026 .272±.019 .184±.014
3 .283±.028 .345±.027 .211±.013 .166±.017

RC

1 .658±.031 .753±.042 .362±.015 .279±.011
2 .598±.033 .649±.028 .335±.011 .258±.017
3 .392±.033 .401±.063 .298±.009 .237±.020

LWS

1 .463±.048 .726±.031 .265±.010 .240±.014
2 .209±.028 .720±.025 .254±.010 .223±.008
3 .205±.013 .579±.041 .237±.005 .194±.026

PL-AGGD

1 .671±.027 .743±.026 .353±.019 .355±.015
2 .595±.036 .677±.028 .314±.018 .315±.019
3 .380±.032 .474±.057 .296±.015 .286±.018

MaxMin

PRODEN

1 .508±.024 .424±.045 .387±.014 .316±.019
2 .400±.037 .377±.040 .357±.012 .287±.024
3 .345±.048 .309±.058 .336±.012 .250±.018

RC

1 .519±.028 .731±.027 .390±.014 .306±.023
2 .469±.035 .666±.027 .371±.013 .288±.021
3 .380±.048 .524±.034 .363±.010 .267±.020

LWS

1 .242±.042 .435±.049 .225±.038 .289±.017
2 .239±.048 .406±.040 .207±.034 .271±.014
3 .218±.017 .318±.064 .216±.029 .244±.023

PL-AGGD

1 .527±.035 .391±.040 .383±.014 .397±.028
2 .439±.020 .371±.037 .372±.020 .360±.029
3 .321±.043 .327±.028 .344±.011 .328±.023

Table 2: The classification accuracies (mean±std) of ELIMIPL and
comparative algorithms on the benchmark datasets with varying
numbers of false positive candidate labels (r ∈ {1, 2, 3}).

5 class labels, ELIMIPL achieves an average accuracy at least
0.016 higher than DEMIPL and between 0.032 to 0.17 higher
than MIPLGP. In the case of the Birdsong-MIPL dataset that
comprises 13 class labels, ELIMIPL’s average accuracy sur-
passes DEMIPL by at least 0.021 and MIPLGP by at least
0.055. The SIVAL-MIPL dataset spans 25 class labels, en-
compassing diverse categories such as fruits and commodi-
ties. ELIMIPL’s average accuracy surpasses DEMIPL by
0.04 to 0.097 and MIPLGP by an average of 0.013. No-
tably, DEMIPL demonstrates relatively superior performance
with fewer class labels, while MIPLGP excels in scenarios
with more class labels. In contrast, ELIMIPL consistently
maintains the highest average accuracy in both fewer and
more class labels. This indicates that ELIMIPL exhibits su-
perior capabilities compared to existing MIPL algorithms.
PLL algorithms exhibit decent results on the MNIST-MIPL and
FMNIST-MIPL datasets when r = 1 or r = 2. However,
their performance significantly deteriorates when r = 3 or
on the Birdsong-MIPL and SIVAL-MIPL datasets. This observa-
tion underscores the intrinsic complexity of MIPL problems,
highlighting that they cannot be reduced to PLL problems.

The above analysis not only highlights the robustness of
ELIMIPL across diverse label space but also emphasizes the
limitations of addressing MIPL problems using PLL algo-
rithms. The results underscore the importance of algorithmic
designs specifically tailored to MIPL tasks.

Algorithm C-Row C-SBN C-KMeans C-SIFT
ELIMIPL .433±.008 .509±.007 .546±.012 .540±.010
DEMIPL .408±.010 .486±.014 .521±.012 .532±.013
MIPLGP .432±.005 .335±.006 .329±.012 –

Mean
PRODEN .365±.009 .392±.008 .233±.018 .334±.029
RC .214±.011 .242±.012 .226±.009 .209±.007
LWS .291±.010 .310±.006 .237±.008 .270±.007
PL-AGGD .412±.008 .480±.005 .358±.008 .363±.012

MaxMin
PRODEN .401±.007 .447±.011 .265±.027 .291±.011
RC .227±.012 .338±.010 .208±.007 .246±.008
LWS .299±.008 .382±.009 .247±.005 .230±.007
PL-AGGD .460±.008 .524±.008 .434±.009 .285±.009

Table 3: The classification accuracies (mean±std) of ELIMIPL and
comparative algorithms on the real-world datasets.

Dataset r ELIMIPL MA+SP MA+IN MA

Birdsong
1 .771±.018 .742±.014 .746±.015 .733±.011
2 .745±.015 .665±.024 .689±.020 .677±.017
3 .717±.017 .592±.031 .674±.023 .652±.016

SIVAL
1 .675±.022 .618±.021 .626±.019 .620±.022
2 .616±.025 .532±.041 .550±.040 .540±.038
3 .600±.029 .545±.027 .521±.025 .521±.032

Table 4: The classification accuracies of the variants on the
Birdsong-MIPL and SIVAL-MIPL datasets.

4.3 Results on the Real-World Datasets
Table 3 provides the results of ELIMIPL and the compara-
tive algorithms on the CRC-MIPL dataset. The symbol – de-
notes cases where results could not be obtained due to mem-
ory overflow on our server. Compared to MIPL algorithms,
ELIMIPL consistently achieves the highest average accura-
cies. Additionally, in comparison to PLL algorithms, ELIM-
IPL significantly outperforms them in 30 out of 32 cases.

For the CRC-MIPL dataset, both ELIMIPL and DEMIPL
exhibit improved performance as the complexity of the im-
age bag generator increases. This observation aligns with
the intuition that, while avoiding overfitting, intricate feature
extractors tend to produce higher classification accuracies.
However, this phenomenon is not consistently observed for
MIPLGP and PLL algorithms. For example, these algorithms
do not consistently achieve superior results on the C-KMeans
and C-SIFT datasets compared to the results on the CRC-Row
or C-SBN dataset. We posit that the intricate features exceed
the capability limits of these algorithms. Thus, the develop-
ment of effective MIPL algorithms becomes imperative.

In most cases, the MaxMin strategy tends to yield superior
outcomes than the Mean strategy. We postulate that this dif-
ference arises from the significant distinction between tissue
cells and the background in the CRC-MIPL dataset. Apply-
ing the Mean strategy to features generated by simple image
bag generators (i.e., Row and SBN) diminishes the distinc-
tion between tissue cells and the background, making it chal-
lenging to learn discriminative features. Conversely, for fea-
tures generated by more complex image bag generators (i.e.,
KMeansSeg and SIFT), both the Mean and MaxMin strate-
gies demonstrate their respective merits. Therefore, both
strategies are worthy of consideration and application.

4.4 Further Analyses
Effectiveness of CLI To evaluate the impact of CLI, we
modify the loss function in Equation (9) and propose three
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Figure 4: The classification accuracies of ELIMIPL, DEMIPL, and MIPLGP on the Birdsong-MIPL dataset with varying r.
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Figure 5: Attention scores for a test bag. Red and blue are the atten-
tion scores of positive and negative instances, respectively.

variants: MA+SP, MA+IN, and MA. These variants respec-
tively represent the removal of inhibition loss, sparsity loss,
and the simultaneous elimination of both inhibition and spar-
sity losses. Table 4 presents the experimental results con-
ducted on the Birdsong-MIPL and SIVAL-MIPL datasets. With
MA as the baseline, the introduction of individual sparse loss
or inhibition loss tends to yield marginal performance im-
provements in most cases, while in some cases, performance
degradation may occur. In contrast, ELIMIPL, using the CLI
demonstrates a substantial boost in classification accuracy.

Challenging Disambiguation Scenarios We select differ-
ent quantities of false positive labels from 1 to 10 on the
Birdsong-MIPL dataset. Figure 4 presents the experimen-
tal results of ELIMIPL, DEMIPL, and MIPLGP with r ∈
{1, 2, · · · , 10}. Particularly, ELIMIPL and DEMIPL adhere
to the embedded-space paradigm, while MIPLGP follows the
instance-space paradigm. Three distinct phenomena are ob-
served: (a) ELIMIPL consistently exhibits higher average ac-
curacy compared to DEMIPL and MIPLGP. (b) For r < 7,
DEMIPL outperforms MIPLGP. However, when r ≥ 7, MI-
PLGP surpasses DEMIPL. (c) The gaps between ELIMIPL
and DEMIPL are greater when r ∈ {6, 7, 8, 9, 10} than when
r ∈ {1, 2, 3, 4, 5}. The widening gaps signify the growing
significance of the scaled additive attention mechanism and
CLI. Therefore, Figure 4 clearly demonstrates that ELIMIPL
outperforms both MIPLGP and DEMIPL in disambiguation,
even when confronted with challenging scenarios.

Comparison of CLI and Cross-Entropy Loss For a com-
parative analysis between the CLI loss and the cross-entropy
(CE) loss, we substitute the mapping loss and the CLI loss
with the CE loss, resulting in variants CE-SP-IN (which

Algorithm r MNIST FMNIST Birdsong SIVAL

CLI loss
1 .992±.007 .903±.018 .771±.018 .675±.022
2 .987±.010 .845±.026 .745±.015 .616±.025
3 .748±.144 .702±.055 .717±.017 .600±.029

CE-SP-IN

1 .899±.037 .825±.035 .740±.013 .639±.030
2 .847±.027 .679±.037 .687±.024 .587±.022
3 .636±.112 .610±.037 .592±.036 .578±.022

CE

1 .919±.017 .709±.257 .704±.019 .587±.028
2 .833±.016 .645±.044 .616±.032 .534±.025
3 .628±.096 .551±.032 .459±.045 .514±.025

Table 5: The comparison between the CLI loss and the CE loss.

utilizes CE loss, sparsity loss, and inhibition loss) and CE
(which only utilizes CE loss), respectively. Table 5 illustrates
that, in all cases, accuracies obtained with the CLI loss sur-
pass those achieved with CE-SP-IN and CE. Notably, the in-
corporation of inhibition loss and sparsity loss enhances the
performance of the CE loss, underscoring the importance of
considering the intrinsic properties of the label space and the
information from non-candidate label sets.

Interpretability of the Attention Mechanism Figure 5
displays the attention scores of a test multi-instance bag in
the MNIST-MIPL dataset (r = 1). The bag contains posi-
tive instances represented by the digit 6, while negative in-
stances are drawn from digits {1, 3, 5, 7, 9}. Additionally, we
visualize the attention scores of all three positive instances
and the negative instances. Figure 5 illustrates that ELIM-
IPL can accurately identify all positive instances by assigning
significantly higher attention scores to them, and the attention
scores can be directly utilized for interpretability.

Due to space constraints, additional experimental results
and analyses are presented in the appendix.

5 Conclusion
This paper investigates a multi-instance partial-label learning
algorithm that introduces a scaled additive attention mecha-
nism and exploits conjugate label information. This infor-
mation includes both candidate label information and non-
candidate label information, along with the sparsity of the
true label matrix. Experimental results demonstrate the su-
periority of our proposed ELIMIPL algorithm. The utiliza-
tion of conjugate label information proves significantly more
effective than relying on incomplete label information, espe-
cially in challenging disambiguation scenarios. In the future,
we will explore the instance-depend multi-instance partial-
label learning algorithm and conduct theoretical analyses to
develop more effective algorithms.
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1 Additional Experiment Results
1.1 Results of PLL algorithms with MLP
We compared with four PLL algorithms, i.e., PRODEN [Lv et
al., 2020], RC [Feng et al., 2020], LWS [Wen et al., 2021],
and PL-AGGD [Wang et al., 2022]. Among these, the first
three algorithms can be used with either linear classifiers or
multi-layer perceptrons (MLP). Due to space limitations, we
presented only the results obtained using the linear classifiers
in the main body of the paper. Table A1 and A2 display the
results of ELIMIPL and the comparative PLL algorithms with
MLP on the benchmark and CRC-MIPL datasets, respectively.

Table A1 clearly illustrates that ELIMIPL consistently out-
performs the classification accuracies of the comparative PLL
algorithms with MLP. ELIMIPL consistently outperforms the
comparative PLL algorithms in all cases. However, when em-
ploying MLP, the comparative PLL algorithms did not con-
sistently achieve superior outcomes when compared to them-
selves using linear classifiers. This is particularly evident
when dealing with datasets containing relatively simple fea-
tures, where MLP results in lower performance than linear
classifiers. This phenomenon suggests that for the compar-
ative PLL algorithms, linear classifiers possess sufficient ca-
pacity to handle relatively simple features, while MLP might
lead to overfitting on the benchmark datasets.

Table A2 reveals that ELIMIPL significantly outperforms
the comparative PLL algorithms in 20 out of 24 cases while
showing inferior performance in 3 cases out of 24. Notably,
PLL algorithms utilizing MLP consistently outperform those
using linear classifiers across almost all cases. When re-
placing linear classifiers with MLP, results obtained from the
KMeansSeg image bag generator exhibit a substantial im-
provement compared to those generated by simpler image bag
generators (i.e., Row and SBN), while the improvements are
less pronounced with the SIFT image bag generator. In con-
clusion, although the PLL algorithms can attain satisfactory
results using MLP in certain scenarios, the development of
dedicated MIPL algorithms is essential.

1.2 Win/tie/loss counts of Experimental Results
To ensure the reliability of the results, we perform the pair-
wise t-test at a significance level of 0.05. We present the
∗Corresponding author

Algorithm r MNIST FMNIST Birdsong SIVAL

ELIMIPL

1 .992±.007 .903±.018 .771±.018 .675±.022
2 .987±.010 .845±.026 .745±.015 .616±.025
3 .748±.144 .702±.055 .717±.017 .600±.029

Mean

PRODEN

1 .555±.033 .652±.033 .303±.016 .303±.020
2 .372±.038 .463±.067 .287±.017 .274±.022
3 .285±.032 .288±.039 .278±.006 .242±.009

RC

1 .660±.031 .697±.166 .329±.014 .344±.014
2 .577±.039 .684±.029 .301±.014 .299±.015
3 .362±.029 .414±.050 .288±.019 .256±.013

LWS

1 .605±.030 .702±.033 .344±.018 .346±.014
2 .431±.024 .547±.040 .310±.014 .312±.015
3 .335±.029 .411±.033 .289±.021 .286±.018

MaxMin

PRODEN

1 .465±.023 .358±.019 .339±.010 .322±.018
2 .338±.031 .315±.023 .329±.016 .295±.021
3 .260±.037 .265±.031 .305±.015 .244±.018

RC

1 .518±.022 .421±.016 .379±.014 .304±.015
2 .462±.028 .363±.018 .359±.015 .268±.023
3 .366±.039 .294±.053 .332±.024 .244±.014

LWS

1 .457±.028 .346±.033 .349±.013 .345±.013
2 .351±.043 .323±.031 .336±.013 .314±.019
3 .274±.037 .267±.034 .307±.016 .268±.019

Table A1: The classification accuracies (mean±std) of ELIMIPL
and comparative PLL algorithms on the benchmark datasets with
varying numbers of false positive candidate labels (r ∈ {1, 2, 3}).

Algorithm Row SBN KMeans SIFT
ELIMIPL .433±.008 .509±.007 .546±.012 .540±.010

Mean
PRODEN .405±.012 .515±.010 .512±.014 .352±.015
RC .290±.010 .394±.010 .304±.017 .248±.008
LWS .360±.008 .440±.009 .422±.035 .338±.009

MaxMin
PRODEN .453±.009 .529±.010 .563±.011 .294±.008
RC .347±.013 .432±.008 .366±.010 .204±.008
LWS .381±.011 .442±.009 .335±.049 .287±.009

Table A2: The classification accuracies (mean±std) of ELIMIPL
and comparative PLL algorithms on the real-world datasets.

win/tie/loss counts between ELIMIPL and the comparative al-
gorithms on the benchmark datasets for varying numbers of
false positive labels (r ∈ {1, 2, 3}), as well as the CRC-
MIPL dataset, in Table A3. Several key observations emerge:
(a) ELIMIPL demonstrates statistical superiority over MIPL
and PLL algorithms in 67.7% and 96.9% of cases, respec-
tively. (b) Across the benchmark datasets, ELIMIPL exhibits
statistical superiority over comparative algorithms in 95.3%
of cases. (c) Specifically, for the CRC-MIPL dataset, ELIMIPL



ELIMIPL against
In totalDEMIPL MIPLGP PRODEN RC LWS PL-AGGD

r = 1 2/2/0 3/1/0 16/0/0 16/0/0 16/0/0 8/0/0 61/3/0
r = 2 3/1/0 3/1/0 16/0/0 16/0/0 16/0/0 8/0/0 62/2/0
r = 3 2/2/0 2/2/0 16/0/0 16/0/0 16/0/0 8/0/0 60/4/0

CRC-MIPL 4/0/0 2/1/0 11/2/3 16/0/0 16/0/0 6/0/2 55/3/5
In total 11/5/0 10/5/0 59/2/3 64/0/0 64/0/0 30/0/2 238/12/5

Table A3: Win/tie/loss counts on the classification performance of ELIMIPL against the comparing algorithms.

5 0 5 10
10

5

0

5

0
1
2
3
4

10 0 10
5

0

5

10

5 0 5 10

15

10

5

0

5

10

5 0 5 10

5

0

5

10 5 0 5

5

0

5

10

5 0 5

10

5

0

5

10

M
N

IS
T-

M
IP

L
(r

=
1

)
M

N
IS

T-
M

IP
L

(r
=

2
)

DEMIPL DAM-CLI ELIMIPL
Figure A1: t-SNE visualization of aggregated bag-level feature representations produced by the attention mechanisms in DEMIPL, DAM-CLI,
and ELIMIPL on the test set of the MNIST-MIPL dataset (r ∈ {1, 2}).

Algorithm Row SBN KMeans SIFT
ELIMIPL .433±.008 .509±.007 .546±.012 .540±.010
DAM-CLI .424±.007 .501±.008 .534±.012 .531±.010

Table A4: The classification accuracies of ELIMIPL and DAM-CLI.

shows statistical superiority over the comparative algorithms
in 87.3% of cases. In summary, ELIMIPL achieves either su-
perior or competitive performance comparative to the MIPL
and PLL algorithms.

1.3 Effectiveness of the Attention Mechanism

We now show the results to demonstrate the effectiveness
of our scaled additive attention mechanism by contrasting it
with the disambiguation attention mechanism proposed previ-
ously [Tang et al., 2023]. DAM-CLI is derived by substituting
the scaled additive attention mechanism in ELIMIPL with the
disambiguation attention mechanism from DEMIPL. Conse-
quently, the sole distinction between ELIMIPL and DAM-CLI
lies in the utilization of different attention mechanisms.

Table A4 illustrates that ELIMIPL consistently attains
higher average accuracies compared to DAM-CLI, indicating
the effectiveness of the scaled additive attention mechanism.

1.4 Visualization of the Feature Representations
To delve deeper into the scaled additive attention mechanism,
we employ t-SNE [Van der Maaten and Hinton, 2008] to visu-
alize the aggregated bag-level feature representations, i.e., zi

in Eq. (4), on the test set of the MNIST-MIPL dataset when
r ∈ {1, 2}. The t-SNE algorithm is implemented by the
sklearn.manifold package with default parameters.

Figure A1 illustrates the feature representations generated
by the attention mechanisms in DEMIPL, DAM-CLI, and
ELIMIPL on the test set of the MNIST-MIPL dataset when
r ∈ {1, 2}. Here, DAM-CLI signifies the use of the dis-
ambiguation attention mechanism in DEMIPL to replace the
scaled additive attention mechanism in ELIMIPL. In Figure
A1, the feature representations produced by the disambigua-
tion attention mechanism in DEMIPL exhibit more intersec-
tions between different categories, suggesting the reduced
discriminations of the representations. In contrast, the feature
representations generated by the disambiguation attention
mechanisms in DAM-CLI form more compact clusters than
those produced by the disambiguation attention mechanisms
in DEMIPL. Additionally, the feature representations gener-
ated by the scaled additive attention mechanisms in ELIM-
IPL exhibit increased accuracy and separability compared to
those produced by the disambiguation attention mechanisms
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Figure A2: The classification accuracies of ELIMIPL with varying l on the benchmark datasets.
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Figure A3: The classification accuracies of ELIMIPL with varying l
on the CRC-MIPL dataset.

in DEMIPL and DAM-CLI.
Consequently, the proposed scaled additive attention

mechanism is more effective for aggregating bag-level feature
representations than the disambiguation attention mechanism
proposed in DEMIPL [Tang et al., 2023]. Moreover, the CLI
enhances the attention mechanism’s ability to aggregate more
compact bag-level feature representations.

1.5 Robustness to the Embedded Space Dimension
In the instance-level feature extractor, the feature transforma-
tion network ψ2(·) maps instance-level features to an embed-
ded space of dimension l. Furthermore, the scaling factor
in the scaled additive attention is 1/

√
l. To examine the im-

pact of parameter l on disambiguation outcomes, we vary l
within the set {64, 128, 256, 512, 1024}. Especially, for each
dataset, all experiments maintain consistent data partitioning
and other parameters except for varying l.

Figures A2 and A3 depict the classification accuracies
of ELIMIPL on the benchmark and CRC-MIPL datasets with

varying l, respectively. On the benchmark dataset, ELIM-
IPL’s performance demonstrates insensitivity to dimension l
for r = 1 or 2. However, when r = 3, some variations
in classification accuracy emerge for the MNIST-MIPL and
SIVAL-MIPL datasets. Specifically, an increase in l correlates
with a decrease in classification accuracy. This phenomenon
can be attributed to the relatively straightforward features
of the benchmark datasets, resulting in an undue emphasis
on their feature representation when projected into a higher-
dimensional embedding space. This effect becomes partic-
ularly pronounced under challenging disambiguation condi-
tions, i.e., r = 3. Overall, ELIMIPL achieves improved clas-
sification accuracies on the benchmark datasets when em-
ploying smaller values of dimension l. On the CRC-MIPL

dataset, ELIMIPL’s classification accuracies remain stable
across variations in l. Notably, when utilizing the Row and
KMeansSeg image bag generators, ELIMIPL demonstrates
strong robustness to the varying dimension l.

Based on the insights derived from the above analysis,
we opt for uniform settings of l = 128 for the benchmark
datasets and l = 512 for the CRC-MIPL dataset, correspond-
ing to log2 l = 7 and log2 l = 9, respectively. From Figures
A2 and A3, it is evident that such parameter configurations of
dimension l can yield commendable results.

1.6 Effectiveness of the Scaling Factor
The scaling factor prevents the softmax function from enter-
ing regions with small gradients, thereby mitigating the issue
of gradient vanishing. To assess the impact of the scaling fac-
tor, we introduce a variant called ELIMIPL wo 1√

l
, differing

from ELIMIPL only by excluding the scaling factor.
Table A5 displays the classification accuracies of ELIMIPL

wo 1√
l

and ELIMIPL on the benchmark datasets. The results



Algorithm r MNIST FMNIST Birdsong SIVAL

ELIMIPL

1 .992±.007 .903±.018 .771±.018 .675±.022
2 .987±.010 .845±.026 .745±.015 .616±.025
3 .748±.144 .702±.055 .717±.017 .600±.029

ELIMIPL wo 1√
l

1 .200±.000 .275±.080 .138±.019 .143±.030
2 .211±.032 .229±.049 .138±.020 .139±.029
3 – .200±.000 .129±.024 .131±.022

Table A5: The classification accuracies (mean±std) of ELIMIPL
and comparative algorithms on the benchmark datasets with vary-
ing numbers of false positive candidate labels (r ∈ {1, 2, 3}). The
symbol ”–” indicates that ELIMIPL wo 1√

l
fails to achieve accuracy

due to gradient vanishing.
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Figure A4: The loss values of ELIMIPL and ELIMIPL wo 1√
l

on the
MNIST-MIPL dataset (r = 1).

highlight that without the scaling factor, the model’s perfor-
mance resembles random classification, demonstrating inef-
fective learning and susceptibility to gradient vanishing. Fur-
thermore, Figure A4 illustrates that without the scaling factor,
the loss value fails to converge. Therefore, in ELIMIPL, the
scaling factor plays a pivotal role in achieving convergence.

1.7 Parameter Sensitivity
Figure A5 illustrates the classification accuracies of ELIM-
IPL on the FMNIST-MIPL dataset across varying parameters
µ and γ. Specifically, µ and γ are chosen from the sets
{0.7, 0.8, 0.9, 1.0, 1.1} and {0.4, 0.5, 0.6, 0.7, 0.8}, respec-
tively. ELIMIPL exhibits robustness to various combinations
of parameters µ and γ. The accuracies remain stable in most
cases, even when r = 3. In our experiments, we set µ = 1
and γ = 0.5 for ELIMIPL on the FMNIST-MIPL dataset. The
results of these experiments validate the efficacy of such pa-
rameter configurations.

1.8 Computational Complexity
Table A6 presents the floating-point operations (FLOPs),
number of parameters (Params), peak GPU memory usage
(PM), average time per test multi-instance bag (Times), and
average accuracy (Acc) over 10 trials, providing comprehen-
sive metrics to assess model complexity. The complexity of
MIPLGP is denoted asO((k+1)n2), where k and n represent
the number of classes and instances, respectively.

As observed in Table A6, the computational complexities
of ELIMIPL and DEMIPL are comparable, yet ELIMIPL ex-
hibits higher accuracy than DEMIPL. Moreover, ELIMIPL
achieves this superior accuracy with a lighter computational

Algorithm FLOPs (M) Params (M) PM (MiB) Times (s) Acc
ELIMIPL 109.86 0.43 1824 1.554 .992
DEMIPL 109.86 0.43 1822 1.426 .976
MIPLGP – – 12938 1.187 .949

Table A6: The outcomes on the MNIST-MIPL dataset (r = 1).

burden compared to MIPLGP. This suggests that, while keep-
ing the computational cost comparable to that of DEMIPL,
ELIMIPL attains superior accuracy, outperforming MIPLGP
in terms of both accuracy and computational complexity.

2 Why ELIMIPL Works?
The experimental results presented in the main body of
the paper and the supplementary material demonstrate that
ELIMIPL outperforms the comparative MIPL and PLL algo-
rithms across the majority of scenarios. Furthermore, we con-
duct a thorough validation of the efficacy of each component
within ELIMIPL. In this section, we provide insights into the
key factors contributing to the success of ELIMIPL.
Scaled Additive Attention Mechanism The t-SNE visu-
alization in Figure A1 reveals that our proposed scaled ad-
ditive attention mechanism generates feature representations
that are not only more compact but also more accurate com-
pared to the disambiguation attention mechanism in DEMIPL
[Tang et al., 2023]. The results presented in Table A4 fur-
ther affirm that the utilization of the scaled additive attention
mechanism leads to higher classification accuracy than em-
ploying the disambiguation attention mechanism. Addition-
ally, as illustrated in Table A5 and Figure A4, the inclusion of
the scaling factor in the scaled additive attention mechanism
ensures the model’s convergence with satisfactory accuracy.
Without the scaling factor, the model fails to converge, result-
ing in classification outputs resembling random guesses.
CLI loss During training, ELIMIPL learns conjugate label
information by minimizing the CLI loss, comprising map-
ping loss, sparse loss, and inhibition loss. Figure 2 in the
main body of the paper illustrates that using CLI loss en-
hances the predicted probabilities of the classifier on true la-
bels while suppressing probabilities on non-candidate labels.
Tables 4 and 5 in the main body of the paper demonstrate that
the CLI loss significantly improves the model’s performance
compared to using mapping loss, mapping loss with sparse
loss, mapping loss with inhibition loss, and cross-entropy
loss. Thus, CLI loss effectively exploits the information from
the label sets and the intrinsic properties of the label space,
enhancing the model’s disambiguation performance.

In summary, the effectiveness of ELIMIPL can be at-
tributed to two pivotal components: (a) the scaled additive
attention mechanism, which is responsible for generating dis-
criminative bag-level feature representations, and (b) CLI
loss, which is proficient in exploiting the information from
the label sets and the intrinsic properties of the label space.

3 MIPL Datasets
We employ four benchmark datasets and one real-world
dataset, all of which are publicly accessible [Tang et al., 2024,
2023]. Next, we will provide detailed descriptions of the data
preparation procedures for each of these datasets.
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Figure A5: The performance of ELIMIPL with varying µ and γ on the FMNIST-MIPL dataset (r ∈ {1, 2, 3}).

3.1 Benchmark MIPL Datasets
The MNIST-MIPL and FMNIST-MIPL datasets are adaptations
of the original MNIST and Fashion-MNIST datasets [LeCun
et al., 1998; Xiao et al., 2017], respectively. To construct
the MNIST-MIPL and FMNIST-MIPL datasets, positive and neg-
ative instances within each multi-instance bag are selected
from targeted and reserved class labels, respectively. For
the MNIST-MIPL dataset, the classes {0, 2, 4, 6, 8} are desig-
nated as the targeted classes, ensuring the presence of positive
instances corresponding to these classes. Conversely, nega-
tive instances are drawn randomly from the reserved classes
{1, 3, 5, 7, 9}. Similarly, the FMNIST-MIPL dataset is con-
structed with the targeted class labels {T-shirt, Trouser, Coat,
Sneaker, Bag} and the reserved class labels {Pullover, Dress,
Sandal, Shirt, Ankle boot}.

The Birdsong dataset is widely employed in both multi-
instance multi-label learning [Briggs et al., 2012] and PLL
[Lv et al., 2020]. This dataset comprises 548 multi-instance
bags, collectively containing 10232 instances. Each instance
is represented by a 38-dimensional feature vector and corre-
sponds to a single label, which is either one of the 13 specific
target classes or a singular negative class. In the Birdsong-
MIPL dataset, the 13 targeted classes are utilized to select pos-
itive instances, while the negative class serves as the reserved
label encompassing the negative instances.

The SIVAL is a MIL benchmark dataset for content-based
image retrieval with 1500 images [Settles et al., 2007]. Each
image serves as a multi-instance bag containing either 31 or
32 instances, linked to one of 25 distinct class labels. Each in-
stance is characterized by a feature vector in a 30-dimensional
space. To create the SIVAL-MIPL dataset from the SIVAL
dataset, the arrangement of multi-instance bags remains un-
changed. Every candidate label set is generated by retaining
the true label and randomly choosing r false positive labels
from the remaining 24 classes.

3.2 Real-World MIPL Datasets
The CRC-MIPL dataset consists of 7000 images used for clas-
sifying colorectal cancer in the absence of exact labels. These
images are uniformly selected from the 7 classes of the NCT-
CRC-HE-100K dataset [Kather et al., 2019]. To form a can-
didate label set for each image, an expert trains three crowd-
sourced workers before annotation. The final candidate la-
bel set is obtained by aggregating the candidate labels from
all three workers. The methodology is elaborated as fol-
lows: Firstly, workers assign candidate labels with non-zero

probabilities, thereby creating a label set per image. Higher
probabilities indicate a greater likelihood of being the true la-
bel, whereas zero probabilities indicate non-candidate labels.
Secondly, the aggregated candidate label set is derived from
the three label sets, which includes labels present in two or
three sets. If the aggregated set contains only one or no label,
the labels with the highest probabilities in each set are se-
lected. In contrast to requiring expert annotation of true labels
for each image, this annotation approach effectively reduces
the expert workload while achieving satisfactory outcomes.

4 The Image Bag Generators
To learn multi-instance features on the CRC-MIPL dataset, we
employ four image bag generators [Wei and Zhou, 2016]:

Row Generator [Maron and Ratan, 1998]: This approach
treats each row within the image as an independent instance.
For feature extraction, it calculates the average RGB color
value of each row and analyzes the color differences with ad-
jacent rows. The resulting instance feature encompasses the
RGB values of the current instance, along with the disparities
in RGB values between the current instance and the preced-
ing one, as well as the subsequent one. This procedure yields
a 9-dimensional feature representation for each instance.

SBN Generator [Maron and Ratan, 1998]: This approach
utilizes five 2 × 2 blobs within the image to generate an
instance-level feature. This feature includes RGB color val-
ues of the central blob and its four neighboring blobs. In-
stances are generated by iteratively shifting one pixel at a
time, while the SBN generator omits feature information at
the image’s four corners. This results in a 15-dimensional
feature vector for each instance.

KMeansSeg Generator [Zhang et al., 2002]: This gen-
erator partitions the image into k segments, producing 6-
dimensional features for each segment. The initial three
dimensions represent color values within the YCbCr color
space, while the subsequent three dimensions derived through
wavelet transformation of the luminance Y component.

SIFT Generator [Lowe, 2004]: Using the scale-invariant
feature transform (SIFT) algorithm, the SIFT generator di-
vides instances into multiple 4× 4 subregions and maps gra-
dients of pixels within these subregions to 8 bins. As a result,
SIFT generates a 128-dimensional feature for each instance.
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