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Abstract—Multi-instance partial-label learning (MIPL) tackles
scenarios where each training sample is represented as a multi-
instance bag associated with a candidate label set. This set
contains one true label and several false positives. Existing
MIPL algorithms have predominantly focused on mapping multi-
instance bags to candidate label sets for disambiguation. However,
these algorithms may not be adequately generalizable in intricate
real-world situations due to their reliance on heuristic methods
for identifying true labels. In this paper, we propose PROMIPL,
i.e., a PRObabilistic generative model for Multi-instance partial-
label learning, to address these challenges. PROMIPL is the
first attempt to explore the probabilistic generative model to
infer latent ground-truth labeling information from the data
generation process in multi-instance partial-label learning. Be-
sides, the discovered underlying structures also provide improved
explanations of the classification predictions. To circumvent
the computationally intensive process of training the generative
model, we formulate a unified variational lower bound within the
stochastic gradient variational Bayesian framework for the model
parameters. Experimental results from benchmark and real-
world datasets show that our proposed PROMIPL is competitive
or superior to the state-of-the-art methods.

Index Terms—Multi-Instance Partial-Label Learning, Gener-
ative Model, Probabilistic Disambiguation, Label Distribution,
Variational Bayesian.

I. INTRODUCTION

Weakly supervised learning is an effective strategy to train
models in resource-constrained environments. Based on the
quality and quantity of available labels, weak supervision can
be classified into three categories: inexact, inaccurate, and
incomplete supervision [1]. In particular, inexact supervision
refers to a coarse correspondence between instances and
labels, a common and challenging issue in real-world ap-
plications. Multi-instance learning (MIL) [1]–[5] and partial-
label learning (PLL) [6]–[9] are two primary frameworks
designed to handle inexact supervision in the instance space
and label space, respectively. Recently, multi-instance partial-
label learning (MIPL) [10] has been proposed to address dual
inexact supervision, where inexact supervision co-occurs in
both the instance and label spaces.

The occurrence of dual inexact supervision spans various
domains. In histopathological image classification, the high
resolution of these images requires dividing them into multi-
instance bags, making the acquisition of ground truth labels
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Fig. 1. Accuracy of our PROMIPL and the existing MIPL approaches on the
MNIST-MIPL dataset with the varying number of false-positive labels.

from domain experts a costly and labor-intensive task [11]–
[13]. A viable approach is to leverage crowd-sourced candidate
label sets, which can substantially reduce the financial and
resource burden associated with the labeling process [14].

To address the challenge of dual inexact supervision in
colorectal cancer classification, Tang et al. [15] introduced
the MIPL algorithm DEMIPL, which incorporates an attention
mechanism to aggregate instances within a bag into a unified
feature representation, alongside a disambiguation strategy to
identify the true label. The attention mechanism mitigates in-
exactness in the instance space, while the disambiguation strat-
egy resolves ambiguity in the label space. Building upon this,
ELIMIPL algorithm [16] was proposed, extending DEMIPL to
utilize both candidate and non-candidate label information.

While existing approaches have demonstrated feasibility,
their reliance on heuristic disambiguation rules limits their
ability to generalize to more complex scenarios. As illustrated
in Fig. 1, the performance of the existing MIPL methods
degrades significantly under challenging conditions. To over-
come this limitation, we introduce a novel framework called
PROMIPL, i.e., a PRObabilistic generative disambiguation
model for MIPL. By treating the hidden ground-truth labels
as latent variables, PROMIPL builds a generative model that
captures the underlying data generation process. Leveraging
variational Bayesian principles, we derive a unified variational



lower bound for the data log-likelihood via variational infer-
ence. This formulation facilitates simultaneous label disam-
biguation and model induction. By fitting a generative model,
PROMIPL effectively extracts ground-truth label information,
uncovering the inherent data structure for principled label
clarification. The prediction model is subsequently optimized
using a confidence-weighted cross-entropy loss. Comparative
experimental results show that PROMIPL outperforms existing
MIPL algorithms across various benchmarks.

Overall, our contributions are as follows: 1) We present
the first generative framework specifically designed to address
MIPL problems. 2) Our framework introduces a bag-wise
Bayesian prior distribution, pθpzq, enabling the model to
effectively capture complex interactions between individual
instances and collective bag-level information. 3) Extensive
experiments demonstrate that PROMIPL consistently outper-
forms a wide range of existing MIPL and PLL algorithms.

The structure of the paper is as follows. Section II provides
a brief review of related work. Section III details the proposed
PROMIPL method. Section IV reports experimental results
on both synthetic and real-world datasets. Finally, Section V
concludes the paper and outlines potential future directions.

II. RELATED WORK

A. Multi-Instance Learning

Originating from drug activity prediction [17], MIL has
gained significant attention in recent years due to its ability to
handle complex data structures where labels are assigned to
bags of instances rather than individual instances. Generative
models have shown promising results in MIL tasks by captur-
ing the underlying data distribution and generating informative
representations. Contemporary deep MIL approaches predom-
inantly leverage generative models for instance aggregation
and label prediction [12], [13], [18]. Adel et al. [19] provide a
methodological guide for modeling multiple-instance learning
(MIL) tasks by introducing and analyzing generative models
within a general framework and examining a variety of model
structures and components. Pal et al. [20] employs a Bayesian
graph neural network framework to jointly learn the parame-
ters associated with the bag embedding, graph topology, and
the weights of the graph neural network. Building on this
concept, Zhang et al. [21] advanced the approach by utilizing
a generative model with a shared bag-level latent factor and
instance-level latent factors, effectively capturing both shared
dependencies and individual variations. Additionally, the aux-
iliary classifier facilitates end-to-end prediction of instance and
bag labels. Moreover, researchers have further explored the
intrinsic capabilities of generative models to augment model
performance [12], [14], [22], [23].

Nevertheless, although these methodologies have demon-
strated encouraging outcomes with well-defined bag-level la-
bels, they face considerable difficulties when confronted with
the inherent ambiguity of bag-level annotations.

B. Partial-Label Learning

Partial-label learning deals with the challenge of disam-
biguating the true label from a set of candidate labels provided
for each instance. Traditional supervised learning methods are
ill-suited for this setting due to the inherent label noise and
ambiguity [24]–[26]. PLL methods can be broadly categorized
into two types: disambiguation-based and identification-based
[27]. Generative models, which can model the underlying data
distribution and the process generating the labels, have been
increasingly employed to enhance PLL by leveraging their
ability to represent complex data distributions and infer miss-
ing information [28]. Probabilistic models provide a natural
way to handle the uncertainty in PLL. The seminal work by
[6] pioneered a probabilistic approach treating the true label
as a latent variable, aiming to maximize the likelihood of
observed data. Feng et al. [29] dissected the generation process
of partially labeled data using contrastive learning within an
Expectation-Maximization (EM) framework. They iteratively
identify true labels and refine model parameters accordingly.
Yao et al. [30] employed deep convolutional neural networks
for feature extraction and utilized an exponential moving
average technique to infer latent true labels. Zhang et al.
[31] introduced a GAN-based approach for partially labeled
learning, where the generator models the data distribution and
the discriminator distinguishes true labels among candidates.
Lv et al. [32] proposed a classifier-consistent risk estimator
grounded in empirical risk minimization principles for pro-
gressive true label discovery. Similarly, Wen et al. [33] intro-
duced a generalized weighted loss function adaptable across
different methods through customized weight assignments.

Despite their efficacy in tackling PLL challenges, these
algorithms encounter difficulties in accommodating imprecise
supervision across instances, thereby constraining their direct
applicability to MIPL scenarios.

C. Multi-Instance Partial-Label Learning

Multi-instance partial-label learning (MIPL) is a novel
learning framework extending both multi-instance learning
(MIL) and partial-label learning (PLL). It addresses the chal-
lenge of inexact supervision present in both instance and label
spaces. There are three existing primary MIPL algorithms,
named MIPLGP [10], DEMIPL [15], and ELIMIPL [16]. Tang
et al. [10] pioneered the MIPL framework with MIPLGP,
operating within the instance-space paradigm. Conversely,
DEMIPL adopts an embedded-space paradigm, utilizing a two-
step process. It first aggregates each multi-instance bag into
a unified feature representation via a disambiguated attention
mechanism. Subsequently, it employs a momentum-based dis-
ambiguation strategy to identify true labels within the can-
didate set. Building on this, ELIMIPL leverages information
from both candidate and non-candidate label sets through
three distinct loss functions [16], learning mappings from
multi-instance bags to candidate label sets while considering
candidate label matrix sparsity.

Nevertheless, existing MIPL algorithms fall short in har-
nessing the potential to reconstruct ground-truth label, thereby
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Fig. 2. Description of our proposed PROMIPL framework, which follows Eq. (9) and Eq. (10) for model training and Eq. (5) for multi-instance bags
wise-prior distribution. The term qϕpy | z, sq represents the variational posterior distribution. The unshaded y represents the unobserved true label variable
and qϕpy | z, sq is constructed to disambiguate the candidate label set by inferring the most probable ground-truth label from which candidate labels.

imposing constraints on the predictive performance of the
models. This paper endeavors to bridge this lacuna by pro-
pounding an exploratory methodology that encapsulates the
generative process of the MIPL data through the utilization of
a bespoke probabilistic disambiguation model.

III. THE PROPOSED APPROACH

Formally, we define a MIPL training dataset as D “

tpXi, Siq | 1 ď i ď mu, which consists of m bags and their
corresponding candidate label sets. Each Si contains a single
true label and one or more false positives. The instance
space is denoted as X “ Rd, and the label space as Y “

t1, 2, . . . , ku, encompassing k distinct classes. Each bag Xi

is composed of ni instances in a d-dimensional space. Both
the candidate label set Si and its complement Si are proper
subsets of Y , satisfying the condition |Si| `

ˇ

ˇSi
ˇ

ˇ “ |Y| “ k,
where |¨| denotes the set cardinality.

The PROMIPL workflow is depicted in Fig. 2. The proce-
dure initiates by leveraging a feature extractor, denoted as fψϕI

,
to produce instance-level feature vectors Zi from each multi-
instance bag Xi. Subsequently, an adaptive weighted attention
mechanism is deployed to construct a meticulously calibrated
prior distribution pθpzq for the aggregated bag-level factors.
To elucidate the underlying causes of label ambiguity in the
MIPL data, we conceptualize the hidden ground-truth label as

a latent variable and devise a generative model to encapsulate
the generation process of the MIPL data.

A. Bayesian Prior in the Instance Space

Specifically, each multi-instance bag is denoted as Xi “

txi,1, xi,2, . . . , xi,ni
u P Rdˆni , encompassing ni individual

instances. To derive instance-level features, we utilize a neural
network-based function fψϕI

, parameterized by ϕI and ψ,
which processes the multi-instance bag as input. This function
is formally articulated as follows:

Zi “ fψϕI
pXiq “ tzi,1, zi,2, ¨ ¨ ¨ , zi,ni

u , (1)

where the instance-level features for the multi-instance bag Xi

are encoded in Zi P Rlˆni , where each row zi, j corresponds
to the feature representation of the j-th instance within the
bag. This matrix structure allows for the extraction of distinct
characteristics for each constituent instance.

In practical settings, our observations are constrained to
multi-instance bags and their associated candidate labels, with
instances within each bag showcasing diverse characteristics
and traits. To address this diversity, we devise a weight-
ing mechanism that assigns attention scores to individual
instances, reflecting their relevance and importance. This
strategy enables the model to adeptly manage the inherent
bag heterogeneity and effectively leverage the information
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from diverse instances. Initially, during the early stages of
training, attention scores distribute evenly across all instances
in multi-instance partial-label learning. However, as training
progresses, the scores for positive instances consistently out-
pace those of their negative counterparts.

The dual nature of inexact supervision poses challenges
for the attention mechanism in distinguishing between pos-
itive and negative samples during the early training phase,
leading to imprecise attention score computations. As training
advances, the mechanism gradually assigns distinct attention
weights to these instances. To enhance alignment with the
model’s performance, we propose a dynamic approach that
adjusts the attention scores. The calculation of attention scores
is mathematically represented by the following equation:

aij “ softmax

˜

WJ
`

tanh
`

WJ
1 zi,j

˘

d sigm
`

WJ
2 zi,j

˘˘

τ ptq

¸

,

(2)
where WJ,WJ

1 , and WJ
2 are learnable parameters. tanhp¨q

and sigmp¨q are the hyperbolic tangent and sigmoid functions,
respectively. The operator d denotes element-wise multiplica-
tion, and τ ptqdenotes the temperature parameter of the margin-
aware attention mechanism. More precisely, during the initial
training stages, a higher temperature parameter is strategically
employed to flatten the attention score distribution, preventing
the mechanism from assigning excessive scores to indetermi-
nate instances. As training progresses, a lower temperature
parameter is employed to refine the distribution, amplifying the
distinction between attention scores assigned to positive and
negative samples. The dynamic adjustment of the temperature
parameter at the t-th epoch is mathematically formulated as:

τ ptq “ max
!

τm, τ
pt´1q ˚ p1 ´ ∆τq

)

, (3)

where τm and τ pt´1q represent the minimum temperature and
the temperature at the pt ´ 1q-th epoch, respectively. ∆τ
represents the decremental rate of the temperature parameter.
Consequently, Eq. (3) encapsulates an adaptive mechanism
that adjusts the temperature parameter for the margin-sensitive
attention mechanism, thereby facilitating a progressive refine-
ment of the attention score distribution commensurate with the
model’s evolving ability for discriminating between positive
and negative instances as training advances.

In multi-instance bags with varying quantities of positive
instances, the attention score distribution exhibits heterogene-
ity, necessitating diverse temperature parameters for optimal
accuracy across different bags. To address this issue, we
propose a normalization strategy for attention scores, which
ensures a balanced and efficient allocation of focus, regardless
of the number of positive elements per bag:

āij “
aij ´ āi
ni ´ 1

, (4)

where āi “ 1
ni

řni

j“1 aij is the mean value of the attention
scores in the i-th multi-instance bag. Subsequent to obtaining
normalized attention scores, we aggregate the instance-level

feature representations to compose the bag-wise prior distri-
bution pθ pzq in the following manner:

pθpzq “

DzB
ź

k“1

N p
1

řni

j“1 āij

ni
ÿ

j“1

āijf
ψ
ϕI

pXjq,

1
řni

j“1 āij

ni
ÿ

j“1

āijf
π
ϕI

pXjqq.

(5)

To elucidate further, the parameter DzB defines the dimen-
sionality of the latent factors at the bag level in the context of
multi-instance learning. The functions fψϕI

and fπϕI
represent

the means and variances of Gaussian distributions respectively,
and these distributions are parameterized by neural networks.
This process then calculates the prior distribution for the entire
bag by aggregating these factors through attention mecha-
nisms. The attention-weighted aggregation results in a more
nuanced and comprehensive representation of the latent vari-
ables. This refined approach enables the model to effectively
capture the complex interactions between individual instances
and the collective bag-level information, while also taking into
account the importance of each instance within the broader
multi-instance framework. This strategy allows the model
to adeptly capture the intricate interplay between instance-
specific and aggregate information, while also considering
the relative significance of each instance within the broader
context of the multi-instance bags setup.

B. Probabilistic Disambiguation in the Label Space

In real-world applications involving multi-instance partial-
label datasets, our method develops a probabilistic model
tailored to capture the underlying generative mechanism. This
is achieved by introducing an unobserved latent variable y
to embody the true class labels. The generative process is
structured into three distinct sequential steps:

1) Sampling a multi-instance bag z from the bag-wise
Bayesian prior probabilistic distribution pθpzq;

2) Extracting a latent variable y as the true label of the bag
z by means of stochastic sampling from the authentic
class posterior distribution pθpy | zq, which encapsulates
the underlying probabilistic relationship between the
latent true label and the observed bag;

3) Distorting the ground-truth label of the bag to derive
its set of candidate labels s via pθps | z, yq which is
parameterized by θ.

Accordingly, the joint probability distribution pθpz, y, sq

can be factorized as:

pθpz, y, sq “ pθpzqpθpy | zqpθps | y, zq. (6)

Considering the multi-instance partial-label training set D,
the aforementioned latent generative process can be acquired
through the maximization of the log-likelihood function on
the observed data. Nevertheless, the direct estimation of the
generative model’s parameters via likelihood maximization
often presents a formidable challenge due to the inherent
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computational intractability. To circumvent this obstacle and
render the optimization process more manageable, the gener-
ative and inference models can be simultaneously learned by
maximizing the marginal likelihood function over the bags,
which entails integrating out the latent variables and inferring
the posterior distribution of the labels given the instances and
their corresponding partial-label sets:

log pθps | zq “ log

ż

pθps, y | zqdy

“ log

ż

pθps | z, yqpθpy | zqdy

“ log

ż

qϕpy | z, sq
pθps | z, yqpθpy | zq

qϕpy | z, sq
dy

ě Eqϕpy|z, sq

„

log
pθps | z, yqpθpy | zq

qϕpy | z, sq

ȷ

“ Lpz, s; θ, ϕq,
(7)

in this formulation, qϕpy | z, sq represents the introduced
variational posterior distribution, serving as an approximation
to the true label posterior distribution pθpy | z, sq. The
term Lpz, s; θ, ϕq denotes the derived variational lower
bound, which functions as a surrogate loss function for the
log-likelihood. This lower bound can be reformulated and
expressed in the following manner:

Lpz, s; θ, ϕq “Eqϕpy|z,sq rlog pθps | z, yqs

´KL rqϕpy | z, sq | pθpy | zqs ,
(8)

the symbol KLr¨ | ¨s represents the Kullback-Leibler diver-
gence between two distributions. In general cases, the KL-
divergence term in Eq. (8) cannot be analytically integrated. To
render it computationally feasible, we employ the mean-field
approximation technique and derive a closed-form solution for
the KL-divergence term as follows [34]:

KL rqϕpy | z, sq | pθpy | zqs

“

t
ÿ

k“1

Eqϕpyk|z, sq

„

log
qϕ pyk | z, sq

pθ pyk | zq

ȷ

“

t
ÿ

k“1

pykϕ log
pykϕ
pykθ

`

´

1 ´ pykϕ

¯

log
1 ´ pykϕ
1 ´ pykθ

,

(9)

in this context, the semantics of the ground-truth class pos-
terior distribution pθpy | zq are perspicuous, constituting the
quintessential prediction model. Concurrently, the variational
posterior qϕpy | z, sq (colloquially referred to as the infer-
ence model) endeavors to elucidate the ambiguity inherent
in the candidate label set by inferring the labels with the
highest probability of being the ground-truth label, from which
the candidate labels could have been obfuscated, given the
multi-instance bag z. Concomitantly, pθps | z, yq (colloqui-
ally termed the generative model) obfuscates the ascertained
ground-truth label to reconstruct the observed candidate labels.
All distributions encompassed within the framework of Eq.
(9) are instantiated as Gaussian distributions, the parameters
of which are determined by neural networks.

To further elucidate the learning dynamics and behaviors
exhibited by the aforementioned trio of model, we undertake
the reformulation of the variational lower bound through
the meticulous unfolding of the KL-divergence term, thereby
yielding the following expression:

Lpz, s; θ, ϕq “Eqϕpy|z, sq rlog pθpy | zqs
loooooooooooooomoooooooooooooon

LPRIpθ, Dq

`H rqϕpy | z, sqs
loooooooomoooooooon

LCEpθ, ϕ, Dq

` Eqϕpy|z, sq rlog pθps | z, yqs
loooooooooooooooomoooooooooooooooon

LKLpθ, ϕ, Dq

.

(10)
where Hr¨s signifies the entropy of a distribution. The initial
two components of the objective function describe an entropy-
regularized autoencoder mechanism with respect to s. This
mechanism is designed to capture and leverage the intrinsic
structural information of the data, thereby facilitating the dis-
ambiguation process. Conversely, the final component repre-
sents a cross-entropy loss, which serves to train the predictive
model by incorporating the identified ground-truth labeling
information qϕpy | z, sq. Through the optimization of these
terms within a unified variational lower bound framework, the
model incrementally learns the underlying generative process
inherent to the MIPL data.

Hence the complete loss function to minimise is

LpD, θ, ϕq “ LPRIpθ, Dq`LCEpθ, ϕ, Dq`LKLpθ, ϕ, Dq.
(11)

Algorithm 1 is the complete procedure of PROMIPL. Conse-
quently, this enables the disambiguation of the candidate label
set and the concurrent induction of the target predictive model.

IV. EXPERIMENTS

A. Experimental Configurations

1) Datasets: In the experimental design, we adhere to
the methodology of DEMIPL by employing four bench-
mark datasets for multi-instance partial-label learning, comple-
mented by a real-world dataset. These benchmark datasets in-
clude MNIST-MIPL, FMNIST-MIPL, Birdsong-MIPL, and SIVAL-
MIPL, which span a diverse range of applications such as image
analysis and bioinformatics. The CRC-MIPL dataset, a real-
world example, is further divided into four sub-datasets: CRC-
MIPL-Row (C-Row), CRC-MIPL-SBN (C-SBN), CRC-MIPL-KMeansSeg

(C-KMeans), and CRC-MIPL-SIFT (C-SIFT), each featuring dis-
tinct multi-instance characteristics. These features are derived
from four different image bag generators: Row, single blob
with neighbors (SBN), k-means segmentation (KMeansSeg),
and scale-invariant feature transform (SIFT).

Table I presents a detailed overview of the dataset’s char-
acteristics. It includes the count of multi-instance bags, de-
noted as #bag, and the total instances, represented by #ins.
To describe the instance distribution, we use max. #ins,
min. #ins, and avg. #ins, which correspond to the max-
imum, minimum, and average instance count across all bags.
The dimension of each instance-level feature representation is
denoted by #dim, while #class and avg. #CLs signify the
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TABLE I
CHARACTERISTICS OF THE BENCHMARK AND REAL-WORLD MIPL DATASETS.

Dataset #bag #ins max. #ins min. #ins avg. #ins #dim #class avg. #CLs

MNIST-MIPL 500 20664 48 35 41.33 784 5 2, 3, 4

FMNIST-MIPL 500 20810 48 36 41.62 784 5 2, 3, 4

Birdsong-MIPL 1300 48425 76 25 37.25 38 13 2, 3, 4

SIVAL-MIPL 1500 47414 32 31 31.61 30 25 2, 3, 4

C-Row 7000 56000 8 8 8 9 7 2.08
C-SBN 7000 63000 9 9 9 15 7 2.08
C-KMeans 7000 30178 6 3 4.311 6 7 2.08
C-SIFT 7000 175000 25 25 25 128 7 2.08

Algorithm 1 Y˚ “ PROMIPLpD, T, X˚q

Inputs:
D: the MIPL training set tpXi, Siq | 1 ď i ď mu, where
Xi “ txi,1, xi,2, . . . , xi,ni

u, xi,j P X , X “ Rd, Si Ď Y ,
Y “ t1, 2, . . . , ku

T : the maximum number of training epochs
X˚: the unseen multi-instance bag with n˚ instances

Outputs:
Y˚: the predicted label for X˚

1: Initialize model parameters θ, π
2: for t “ 1 to T do
3: Shuffle training set D into B mini-batches
4: for b “ 1 to B do
5: Extract the instance-level features based on Eq. (1)
6: Calculate the attention scores with the temperature
τ ptq as stated by Eqs. (2) and (3), normalize the attention
scores as stated by Eq. (4)

7: Calculate the attention scores and instance-level
features into bag-wise prior distribution based on Eq. (5)

8: Compute unbiased estimator of the variational
lower bound on D by Eq. (10);

9: end for
10: Update model parameters θ, ϕ via gradient ascent.
11: end for
12: Extract the instance-level features of X˚ based on Eq. (1)
13: Calculate the attention scores and instance-level features

into bag-wise prior distribution pθpz˚q according to Eqs.
(2), (3), (4), and (5)

14: return Y˚ “ argmax qϕpy | s, ˚q

label space length and the average length of candidate label
sets, respectively. To evaluate performance comprehensively,
we manipulate the number of false-positive labels on the
benchmark datasets, represented as r p|Si| “ r ` 1q, where Si
denotes the set of candidate labels for each instance.

2) Comparative Algorithms: We extensively compare
PROMIPL with a diverse array of baselines, encompassing
MIPL and PLL techniques. For MIPL algorithms, we consider
MIPLGP, DEMIPL, and ELIMIPL. To address PLL algorithms,
which are not specifically designed for the MIPL data, we
employ two adaptation strategies, named the Mean strategy

and the MaxMin strategy. The Mean strategy calculates the
average feature values across all instances within a bag,
resulting in a bag-level feature representation, and the MaxMin
strategy identifies the maximum and minimum feature values
for each dimension among instances within a bag and concate-
nates these values to form a bag-level feature representation.
There are five involved PLL algorithms, including four deep-
learning-based approaches (PRODEN, RC, LWS and CAVL),
and one feature-aware disambiguation algorithm (PL-AGGD).

3) Implementation: We employed PyTorch to implement
PROMIPL and trained the model using a single NVIDIA
GeForce RTX 4090 GPU, and the code has been made publicly
available on Github1. Utilizing Stochastic Gradient Descent
(SGD) with a momentum of 0.9 and a weight decay of
0.0001, we designed the optimization process. For feature
extraction, a two-layer convolutional neural network and a
fully connected network were employed for MNIST-MIPL and
FMNIST-MIPL, while preprocessed features in Birdsong-MIPL

and SIVAL-MIPL datasets necessitated only a fully connected
network. In the CRC-MIPL dataset, the feature extractor varied
between four image bag generators or ResNet-34, followed
by a fully connected network. The initial learning rate was
selected from the set of t0.005, 0.01, 0.015, 0.02u, and a
cosine annealing technique was applied to Birdsong-MIPL and
SIVAL-MIPL. We set the number of epochs to 100 for MNIST-
MIPL, FMNIST-MIPL datasets, 200 for Birdsong-MIPL, SIVAL-
MIPL, and 300 for CRC-MIPL. The initial configuration of the
temperature parameter’s annealing schedule was set as follows:
tτp0q “ 5, ∆τ “ 0.0u for MNIST-MIPL and FMNIST-MIPL,
tτp0q “ 5, ∆τ “ 0.05, τm “ 0.05u for Birdsong-MIPL

and SIVAL-MIPL, and tτm “ 0.1, ∆τ “ 0.05, τm “ 0.5u

for CRC-MIPL. The selection process for the weights of these
components involved evaluating a range of values, specifically
t0.1, 0.5, 1.0, 1.5u. Following the same dataset partitioning
strategy as DEMIPL and ELIMIPL, we conducted ten random
train/test splits with a 7:3 ratio and reported mean accuracy
and standard deviations across these runs.

B. Comparison with MIPL and PLL Algorithms

Given the incompatibility of partial-label learning algo-
rithms with the multi-instance structure of the MIPL data,

1PROMIPL: https://github.com/yangyf22/ProMIPL
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TABLE II
THE CLASSIFICATION ACCURACY (MEAN˘STD) OF PROMIPL AND COMPARATIVE ALGORITHMS ON THE BENCHMARK DATASETS WITH THE VARYING

NUMBERS OF FALSE-POSITIVE LABELS (r P t1, 2, 3u).

Algorithm r MNIST-MIPL FMNIST-MIPL Birdsong-MIPL SIVAL-MIPL

PROMIPL
1 .999˘.003 .922˘.024 .776˘.015 .682˘.032
2 .999˘.003 .889˘.022 .719˘.018 .633˘.023
3 .783˘.116 .659˘.041 .694˘.021 .539˘.024

ELIMIPL
1 .992˘.007 .903˘.018 .771˘.018 .675˘.022
2 .987˘.010 .845˘.026 .745˘.015 .616˘.025
3 .748˘.144 .702˘.055 .717˘.017 .600˘.029

DEMIPL
1 .976˘.008 .881˘.021 .744˘.016 .635˘.041
2 .943˘.027 .823˘.028 .701˘.024 .554˘.051
3 .709˘.088 .657˘.025 .696˘.024 .503˘.018

MIPLGP
1 .949˘.016 .847˘.030 .716˘.026 .669˘.019
2 .817˘.030 .791˘.027 .672˘.015 .613˘.026
3 .621˘.064 .670˘.052 .625˘.015 .569˘.032

Mean MaxMin Mean MaxMin Mean MaxMin Mean MaxMin

PRODEN
1 .605˘.023 .508˘.024 .697˘.042 .424˘.045 .296˘.014 .387˘.014 .219˘.014 .316˘.019
2 .481˘.036 .400˘.037 .573˘.026 .377˘.040 .272˘.019 .357˘.012 .184˘.014 .287˘.024
3 .283˘.028 .345˘.048 .345˘.027 .309˘.058 .211˘.013 .336˘.012 .166˘.017 .250˘.018

RC
1 .658˘.031 .519˘.028 .753˘.042 .731˘.027 .362˘.015 .390˘.014 .279˘.011 .306˘.023
2 .598˘.033 .469˘.035 .649˘.028 .666˘.027 .335˘.011 .371˘.013 .258˘.017 .288˘.021
3 .392˘.033 .380˘.048 .408˘.044 .390˘.058 .298˘.016 .363˘.010 .237˘.020 .267˘.020

LWS
1 .463˘.048 .242˘.042 .726˘.031 .535˘.049 .265˘.010 .225˘.038 .240˘.014 .289˘.017
2 .209˘.028 .239˘.048 .720˘.025 .406˘.040 .254˘.012 .207˘.034 .223˘.008 .271˘.014
3 .205˘.013 .218˘.017 .579˘.218 .318˘.064 .205˘.016 .216˘.029 .194˘.026 .244˘.023

CAVL
1 .596˘.074 .481˘.030 .728˘.047 .544˘.012 .370˘.013 .354˘.015 .260˘.013 .251˘.023
2 .412˘.039 .389˘.027 .586˘.035 .265˘.037 .335˘.008 .237˘.001 .216˘.011 .216˘.011
3 .315˘.020 .292˘.032 .352˘.035 .285˘.022 .313˘.017 .197˘.014 .175˘.020 .175˘.020

PL-AGGD
1 .671˘.027 .527˘.035 .743˘.026 .394˘.012 .353˘.019 .383˘.014 .355˘.015 .397˘.028
2 .595˘.036 .439˘.020 .678˘.020 .371˘.037 .314˘.012 .372˘.020 .315˘.019 .360˘.029
3 .380˘.032 .321˘.043 .474˘.057 .327˘.028 .296˘.015 .344˘.011 .286˘.018 .328˘.023

we employed two data transformation techniques: the Mean-
based approach and the MaxMin strategy, as described in [15].
The Mean strategy computes a bag-level feature representation
by averaging the feature values of all instances within a
bag. In contrast, the MaxMin strategy involves extracting the
maximum and minimum feature values for each dimension
within a multi-instance bag, and subsequently concatenating
these values to create a unified bag-level feature representation.

1) Results on the Benchmark Datasets: Table II presents
a comprehensive comparison of PROMIPL’s performance
against three MIPL algorithms (MIPLGP, DEMIPL, ELIM-
IPL), four deep-learning-based PLL algorithms utilizing linear
classifiers (PRODEN, RC, LWS and CAVL), and the feature-
aware disambiguation PLL algorithm (PL-AGGD). The evalu-
ation process makes use of benchmark datasets that exhibit
a range of false-positive label frequencies, allowing for a
comprehensive analysis of the system’s performance across
different levels of label accuracy.

PROMIPL consistently outperforms MIPLGP in terms of
average accuracy across almost all instances within the in-
stance space paradigm. When focusing on methods operating
within the embedding space paradigm, PROMIPL demonstrates
superior performance compared to DEMIPL and ELIMIPL in
17 out of 24 cases. Notably, PROMIPL surpasses MIPLGP,
DEMIPL, and ELIMIPL in 29 out of 36 cases. This advantage
is particularly evident on the MNIST-MIPL, FMNIST-MIPL and
SIVAL-MIPL datasets, where PROMIPL consistently achieves
higher average accuracy than DEMIPL. Furthermore, in sce-

narios with two candidate labels per bag (r “ 1), PROMIPL’s
average accuracy surpasses all other multi-instance partial-
label learning algorithms, highlighting its effectiveness.

Interestingly, while partial-label learning algorithms per-
form adequately on simpler datasets like MNIST-MIPL and
FMNIST-MIPL, their effectiveness diminishes with increas-
ing dataset complexity, as observed with Birdsong-MIPL and
SIVAL-MIPL. This trend underscores the limitations of these
algorithms in handling complex data. Regarding data degra-
dation strategies, the Mean strategy generally outperforms the
MaxMin strategy on MNIST-MIPL and FMNIST-MIPL. Con-
versely, the MaxMin strategy tends to yield superior results on
Birdsong-MIPL and SIVAL-MIPL. The findings indicate that the
selection of the most appropriate data degradation approach is
contingent upon the inherent characteristics and complexities
of the dataset under consideration. Datasets exhibiting a rela-
tively simplistic structure and composition may derive optimal
benefits from the implementation of the straightforward Mean
strategy, which involves the calculation and substitution of the
arithmetic mean value. Conversely, datasets characterized by
a higher degree of intricacy and multifaceted nature might
necessitate the adoption of the more sophisticated MaxMin
strategy, which entails the identification and substitution of the
extreme upper and lower bounds within datasets, consequently
maintaining a more comprehensive representation of the inher-
ent dispersion and heterogeneity present in the original dataset.

2) Results on the Real-World Datasets: Table III provides
a comprehensive comparative analysis of the performance
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Fig. 3. Evolution of label distribution during training on the MNIST-MIPL dataset, which curves represent probability density functions. Subplots’ horizontal
coordinates express density and vertical coordinates denote values.

metrics across the CRC-MIPL dataset, juxtaposing our proposed
methodology, henceforth denoted as PROMIPL, with three
MIPL algorithms, namely MIPLGP, DEMIPL, and ELIMIPL,
four deep-learning-based partial-label learning algorithms that
employ linear classifiers, specifically PRODEN, RC, LWS, and
CAVL, as well as the feature-aware disambiguation partial-
label learning algorithm, designated as PL-AGGD. Notably,
results for MIPLGP on the C-SIFT dataset are unavailable due
to computational limitations that indicated by the symbol ”–”.

PROMIPL consistently demonstrates superior performance
compared to MIPL algorithms across all evaluated cases. This
dominance is particularly evident against DEMIPL and ELIM-
IPL, where PROMIPL consistently outperforms them across
all four datasets. Moreover, PROMIPL achieves statistically
superior results compared to all partial-label learning algo-
rithms. Interestingly, it exhibits commendable performance on
simpler datasets like C-Row and C-SBN, while its perfor-

mance significantly improves on more intricate datasets like
C-KMeans and C-SIFT. This performance disparity is also
observed between simpler and more complex datasets when
comparing PROMIPL, DEMIPL and ELIMIPL.

Conversely, MIPLGP and the partial-label learning algo-
rithms exhibit the opposite trend, highlighting their limitations
in effectively modeling complex features inherent in datasets
like C-KMeans and C-SIFT. This deficiency underscores the
urgent need for more effective MIPL algorithms specifically
designed to handle the complexities of such data.

3) Effectiveness of the probabilistic generation process:
To evaluate the efficacy of the probabilistic generation pro-
cess, Fig. 3 illustrates the progression of probability density
functions for candidate labels, the true label, reconstructed
labels, and predicted labels during training on the MNIST-
MIPL dataset. These label distributions are influenced by the
generation process and disambiguation mechanism. As train-
ing advances, the distributions of candidate and reconstructed
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TABLE III
THE CLASSIFICATION ACCURACY (MEAN˘STD) OF PROMIPL AND

COMPARATIVE ALGORITHMS ON THE REAL-WORLD DATASETS.

Algorithm C-Row C-SBN C-KMeans C-SIFT
PROMIPL .435˘.009 .516˘.012 .565˘.013 .562˘.011
ELIMIPL .433˘.008 .509˘.007 .546˘.012 .540˘.010
DEMIPL .408˘.010 .486˘.014 .521˘.012 .532˘.013
MIPLGP .432˘.005 .335˘.006 .329˘.012 –

Mean
PRODEN .365˘.009 .392˘.008 .233˘.018 .334˘.029
RC .214˘.011 .242˘.012 .226˘.009 .209˘.007
LWS .291˘.010 .310˘.006 .237˘.008 .270˘.007
CAVL .312˘.043 .364˘.066 .286˘.062 .329˘.033
PL-AGGD .412˘.008 .480˘.005 .358˘.008 .363˘.012

MaxMin
PRODEN .401˘.007 .447˘.011 .265˘.027 .291˘.011
RC .227˘.012 .338˘.010 .208˘.007 .246˘.008
LWS .299˘.008 .382˘.009 .247˘.005 .230˘.007
CAVL .368˘.054 .503˘.025 .311˘.038 .274˘.018
PL-AGGD .460˘.008 .524˘.008 .434˘.009 .285˘.009
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Fig. 4. Trend of accuracy in iteration on the testing set, which horizontal
coordinates denote number of epochs and vertical coordinates represent values
of accuracy.

labels converge towards the true label’s distribution. The
curve representing the true label’s probability density closely
resembles the shapes of other label distributions. On datasets
with lower complexity, such as each bag with fewer false-
positive labels, the reconstructed label’s density function better
aligns with the candidate labels, indicating a more challenging
reconstruction task on high-complexity datasets.

Fig. 4 substantiates the earlier assertion regarding the in-
fluence of dataset complexity on the probabilistic generation
process, as it presents the test set accuracy for each epoch
on the first fold of all datasets. The curve representing the
test accuracy on the higher complexity dataset consistently
falls below the one for the dataset with fewer false-positive
labels. Notably, PROMIPL converges to similar levels of test
set accuracy across datasets of varying complexity, indicating

LPRI pθ, Dq ` LCEpθ, ϕ,Dq ` LKLpθ, ϕ, Dq

LPRI pθ, Dq ` LKLpθ, ϕ, Dq

LPRI pθ, Dq ` LCEpθ, ϕ,Dq
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Fig. 5. The accuracy of PROMIPL with the variant on all datasets, which
horizontal coordinates denote number of false-positive labels r or names of
sub-dataset and vertical coordinates represent values of mean accuracy.

its consistent predictive efficiency even in complex data.
To delve deeper into the probabilistic generation process,

we present two variants of PROMIPL. Eq. (11) is composed
of three components, denoted as LPRIpθ, Dq, LCEpθ, ϕ, Dq

and LKLpθ, ϕ, Dq, each contributing to the model’s objective.
We devise two variants to evaluate their contributions: one
where we exclude LCEpθ, ϕ, Dq (the entropy term), and
another where LKLpθ, ϕ, Dq (the reconstruction term) is
omitted. These modifications serve as a means to analyze their
respective effects on the overall performance of the algorithm.

Fig. 5 illustrates the performance degradation observed
across various datasets. The variant algorithm LPRIpθ, Dq `

LKLpθ, ϕ, Dq maintains performance metrics closely
aligned with the original PROMIPL. In contrast, the variant
LPRIpθ, Dq ` LCEpθ, ϕ, Dq displays a significant drop
in mean accuracy, accompanied by an increase in standard
deviation, when compared to the baseline. This disparity in
data underscores the impact of the omitted reconstruction loss
on the decline of the variant’s performance, particularly in
terms of prediction accuracy and model stability.

V. CONCLUSION

In this paper, we propose a probabilistic generative
framework for multi-instance partial-label learning, termed
PROMIPL. To the best of our knowledge, this is the first work
to reformulate the MIPL problem using a probabilistic gener-
ative model. By modeling the correlations between instances
and their bag-level label assignments, the proposed PROMIPL
algorithm effectively disambiguates the candidate label set
and identifies the most credible label for each training bag.
Extensive experiments demonstrate that PROMIPL achieves
superior or comparable performance to state-of-the-art meth-
ods. By developing PROMIPL, we endeavor to delve into a
myriad of Bayesian MIPL paradigms to tackle the multifaceted
challenges inherent in real-world MIPL scenarios.
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